• <tfoot id='eaW3Y'></tfoot>

      <legend id='eaW3Y'><style id='eaW3Y'><dir id='eaW3Y'><q id='eaW3Y'></q></dir></style></legend>
      <i id='eaW3Y'><tr id='eaW3Y'><dt id='eaW3Y'><q id='eaW3Y'><span id='eaW3Y'><b id='eaW3Y'><form id='eaW3Y'><ins id='eaW3Y'></ins><ul id='eaW3Y'></ul><sub id='eaW3Y'></sub></form><legend id='eaW3Y'></legend><bdo id='eaW3Y'><pre id='eaW3Y'><center id='eaW3Y'></center></pre></bdo></b><th id='eaW3Y'></th></span></q></dt></tr></i><div id='eaW3Y'><tfoot id='eaW3Y'></tfoot><dl id='eaW3Y'><fieldset id='eaW3Y'></fieldset></dl></div>

      1. <small id='eaW3Y'></small><noframes id='eaW3Y'>

          <bdo id='eaW3Y'></bdo><ul id='eaW3Y'></ul>

        将数据帧转换为二维阵列

        时间:2024-08-21

      2. <small id='eI0TS'></small><noframes id='eI0TS'>

          1. <legend id='eI0TS'><style id='eI0TS'><dir id='eI0TS'><q id='eI0TS'></q></dir></style></legend>

              <tfoot id='eI0TS'></tfoot>

                <bdo id='eI0TS'></bdo><ul id='eI0TS'></ul>
                    <tbody id='eI0TS'></tbody>
                  <i id='eI0TS'><tr id='eI0TS'><dt id='eI0TS'><q id='eI0TS'><span id='eI0TS'><b id='eI0TS'><form id='eI0TS'><ins id='eI0TS'></ins><ul id='eI0TS'></ul><sub id='eI0TS'></sub></form><legend id='eI0TS'></legend><bdo id='eI0TS'><pre id='eI0TS'><center id='eI0TS'></center></pre></bdo></b><th id='eI0TS'></th></span></q></dt></tr></i><div id='eI0TS'><tfoot id='eI0TS'></tfoot><dl id='eI0TS'><fieldset id='eI0TS'></fieldset></dl></div>

                  本文介绍了将数据帧转换为二维阵列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我有一个大小为(140000,22)维的数据框。

                  我必须创建等维数的二维数组才能将其传递到卷积神经网络。

                  您能指导一下如何对此数据帧进行转换吗

                  推荐答案

                  只需在DataFrame上调用.values即可。

                  例如,如果您的数据帧名为df,则可以将df.values传递给卷积神经网络。

                  这篇关于将数据帧转换为二维阵列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  上一篇:如何检查没有扩展名的文件类型? 下一篇:从不同版本的tf.keras加载保存的模型

                  相关文章

                  <i id='oFK5h'><tr id='oFK5h'><dt id='oFK5h'><q id='oFK5h'><span id='oFK5h'><b id='oFK5h'><form id='oFK5h'><ins id='oFK5h'></ins><ul id='oFK5h'></ul><sub id='oFK5h'></sub></form><legend id='oFK5h'></legend><bdo id='oFK5h'><pre id='oFK5h'><center id='oFK5h'></center></pre></bdo></b><th id='oFK5h'></th></span></q></dt></tr></i><div id='oFK5h'><tfoot id='oFK5h'></tfoot><dl id='oFK5h'><fieldset id='oFK5h'></fieldset></dl></div>

                • <legend id='oFK5h'><style id='oFK5h'><dir id='oFK5h'><q id='oFK5h'></q></dir></style></legend>

                      <small id='oFK5h'></small><noframes id='oFK5h'>

                        <bdo id='oFK5h'></bdo><ul id='oFK5h'></ul>

                      <tfoot id='oFK5h'></tfoot>