我正在尝试使用此代码并排绘制两个布局
fig,(ax1,ax2) = plt.subplots(1,2)
sns.displot(x =X_train['Age'], hue=y_train, ax=ax1)
sns.displot(x =X_train['Fare'], hue=y_train, ax=ax2)
它返回以下结果(两个空子图,后跟两行一分图)-
如果我用ViinPlot尝试相同的代码,它会按预期返回结果
fig,(ax1,ax2) = plt.subplots(1,2)
sns.violinplot(y_train, X_train['Age'], ax=ax1)
sns.violinplot(y_train, X_train['Fare'], ax=ax2)
为什么DISPLOT返回不同类型的输出,我如何才能在同一行上输出两个绘图?
seaborn.distplot
的文档,已在seaborn 0.11
中DEPRECATED
。.distplot
替换为:
displot()
,这是一个图形级函数,对于要绘制的绘图类型具有类似的灵活性。这是FacetGrid
,没有ax
参数。histplot()
,用于绘制直方图的轴级函数,包括内核密度平滑。它确实有ax
参数。ax
参数的任何seaborn
FacetGrid
曲线图。使用等效的轴级图。
histplot
。maplotlib.pyplot.subplots
的多种不同方式,请参阅How to plot in multiple subplotsseaborn 0.11.1
&;matplotlib 3.4.2
fig,(ax1,ax2) = plt.subplots(1,2)
sns.histplot(x=X_train['Age'], hue=y_train, ax=ax1)
sns.histplot(x=X_train['Fare'], hue=y_train, ax=ax2)
import seaborn as sns
import matplotlib.pyplot as plt
# load data
penguins = sns.load_dataset("penguins", cache=False)
# display(penguins.head())
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
0 Adelie Torgersen 39.1 18.7 181.0 3750.0 MALE
1 Adelie Torgersen 39.5 17.4 186.0 3800.0 FEMALE
2 Adelie Torgersen 40.3 18.0 195.0 3250.0 FEMALE
3 Adelie Torgersen NaN NaN NaN NaN NaN
4 Adelie Torgersen 36.7 19.3 193.0 3450.0 FEMALE
sns.histplot
# select the columns to be plotted
cols = ['bill_length_mm', 'bill_depth_mm']
# create the figure and axes
fig, axes = plt.subplots(1, 2)
axes = axes.ravel() # flattening the array makes indexing easier
for col, ax in zip(cols, axes):
sns.histplot(data=penguins[col], kde=True, stat='density', ax=ax)
fig.tight_layout()
plt.show()
displot
# create a long dataframe
dfl = penguins.melt(id_vars='species', value_vars=['bill_length_mm', 'bill_depth_mm'], var_name='bill_size', value_name='vals')
# display(dfl.head())
species bill_size vals
0 Adelie bill_length_mm 39.1
1 Adelie bill_depth_mm 18.7
2 Adelie bill_length_mm 39.5
3 Adelie bill_depth_mm 17.4
4 Adelie bill_length_mm 40.3
# plot
sns.displot(data=dfl, x='vals', col='bill_size', kde=True, stat='density', common_bins=False, common_norm=False, height=4, facet_kws={'sharey': False, 'sharex': False})
这篇关于Seborn未在定义的子图内绘制的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!