我在使用multiprocessing
模块时遇到问题。我使用Pool
个工作者及其map
方法并发分析大量文件。每次处理文件时,我都希望更新计数器,这样我就可以跟踪还有多少文件需要处理。以下是示例代码:
import os
import multiprocessing
counter = 0
def analyze(file):
# Analyze the file.
global counter
counter += 1
print counter
if __name__ == '__main__':
files = os.listdir('/some/directory')
pool = multiprocessing.Pool(4)
pool.map(analyze, files)
我找不到此问题的解决方案。
问题在于counter
变量不在您的进程之间共享:每个单独的进程都在创建自己的本地实例并递增该实例。
Value
实例
这里是您的示例的工作版本(带有一些虚拟输入数据)。请注意,它使用的是我在实践中确实会尽量避免的全局值:
from multiprocessing import Pool, Value
from time import sleep
counter = None
def init(args):
''' store the counter for later use '''
global counter
counter = args
def analyze_data(args):
''' increment the global counter, do something with the input '''
global counter
# += operation is not atomic, so we need to get a lock:
with counter.get_lock():
counter.value += 1
print counter.value
return args * 10
if __name__ == '__main__':
#inputs = os.listdir(some_directory)
#
# initialize a cross-process counter and the input lists
#
counter = Value('i', 0)
inputs = [1, 2, 3, 4]
#
# create the pool of workers, ensuring each one receives the counter
# as it starts.
#
p = Pool(initializer = init, initargs = (counter, ))
i = p.map_async(analyze_data, inputs, chunksize = 1)
i.wait()
print i.get()
这篇关于如何从多个进程递增共享计数器?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!