<legend id='eba2E'><style id='eba2E'><dir id='eba2E'><q id='eba2E'></q></dir></style></legend>
    <tfoot id='eba2E'></tfoot>

    <i id='eba2E'><tr id='eba2E'><dt id='eba2E'><q id='eba2E'><span id='eba2E'><b id='eba2E'><form id='eba2E'><ins id='eba2E'></ins><ul id='eba2E'></ul><sub id='eba2E'></sub></form><legend id='eba2E'></legend><bdo id='eba2E'><pre id='eba2E'><center id='eba2E'></center></pre></bdo></b><th id='eba2E'></th></span></q></dt></tr></i><div id='eba2E'><tfoot id='eba2E'></tfoot><dl id='eba2E'><fieldset id='eba2E'></fieldset></dl></div>
  • <small id='eba2E'></small><noframes id='eba2E'>

      • <bdo id='eba2E'></bdo><ul id='eba2E'></ul>

      1. 什么是 memoization 以及如何在 Python 中使用它?

        时间:2024-04-21
          <tbody id='fXXBZ'></tbody>

            <i id='fXXBZ'><tr id='fXXBZ'><dt id='fXXBZ'><q id='fXXBZ'><span id='fXXBZ'><b id='fXXBZ'><form id='fXXBZ'><ins id='fXXBZ'></ins><ul id='fXXBZ'></ul><sub id='fXXBZ'></sub></form><legend id='fXXBZ'></legend><bdo id='fXXBZ'><pre id='fXXBZ'><center id='fXXBZ'></center></pre></bdo></b><th id='fXXBZ'></th></span></q></dt></tr></i><div id='fXXBZ'><tfoot id='fXXBZ'></tfoot><dl id='fXXBZ'><fieldset id='fXXBZ'></fieldset></dl></div>

            <small id='fXXBZ'></small><noframes id='fXXBZ'>

            <tfoot id='fXXBZ'></tfoot>
              <bdo id='fXXBZ'></bdo><ul id='fXXBZ'></ul>
              1. <legend id='fXXBZ'><style id='fXXBZ'><dir id='fXXBZ'><q id='fXXBZ'></q></dir></style></legend>
                  本文介绍了什么是 memoization 以及如何在 Python 中使用它?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我刚开始使用 Python,我不知道 memoization 是什么以及如何使用它.另外,我可以举一个简化的例子吗?

                  I just started Python and I've got no idea what memoization is and how to use it. Also, may I have a simplified example?

                  推荐答案

                  记忆化是指根据方法输入记忆(记忆化"→备忘录"→被记忆)方法调用的结果,然后返回记忆的结果而不是再次计算结果.您可以将其视为方法结果的缓存.有关详细信息,请参阅第 387 页以了解 Introduction To Algorithms (3e), Cormen 等人中的定义.

                  Memoization effectively refers to remembering ("memoization" → "memorandum" → to be remembered) results of method calls based on the method inputs and then returning the remembered result rather than computing the result again. You can think of it as a cache for method results. For further details, see page 387 for the definition in Introduction To Algorithms (3e), Cormen et al.

                  在 Python 中使用 memoization 计算阶乘的简单示例如下所示:

                  A simple example for computing factorials using memoization in Python would be something like this:

                  factorial_memo = {}
                  def factorial(k):
                      if k < 2: return 1
                      if k not in factorial_memo:
                          factorial_memo[k] = k * factorial(k-1)
                      return factorial_memo[k]
                  

                  你可以再复杂一点,把memoization过程封装成一个类:

                  You can get more complicated and encapsulate the memoization process into a class:

                  class Memoize:
                      def __init__(self, f):
                          self.f = f
                          self.memo = {}
                      def __call__(self, *args):
                          if not args in self.memo:
                              self.memo[args] = self.f(*args)
                          #Warning: You may wish to do a deepcopy here if returning objects
                          return self.memo[args]
                  

                  然后:

                  def factorial(k):
                      if k < 2: return 1
                      return k * factorial(k - 1)
                  
                  factorial = Memoize(factorial)
                  

                  在 Python 2.4 中添加了一个名为decorators"的功能现在允许您简单地编写以下代码来完成相同的事情:

                  A feature known as "decorators" was added in Python 2.4 which allow you to now simply write the following to accomplish the same thing:

                  @Memoize
                  def factorial(k):
                      if k < 2: return 1
                      return k * factorial(k - 1)
                  

                  Python 装饰器库 有一个类似的装饰器,称为 memoized 比此处显示的 Memoize 类更健壮.

                  The Python Decorator Library has a similar decorator called memoized that is slightly more robust than the Memoize class shown here.

                  这篇关于什么是 memoization 以及如何在 Python 中使用它?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  上一篇:为什么 DataFrame 的连接会呈指数级变慢? 下一篇:Pygame 窗口几秒钟后没有响应

                  相关文章

                • <small id='KJ6Ec'></small><noframes id='KJ6Ec'>

                    • <bdo id='KJ6Ec'></bdo><ul id='KJ6Ec'></ul>
                  1. <tfoot id='KJ6Ec'></tfoot>
                    <legend id='KJ6Ec'><style id='KJ6Ec'><dir id='KJ6Ec'><q id='KJ6Ec'></q></dir></style></legend>

                    1. <i id='KJ6Ec'><tr id='KJ6Ec'><dt id='KJ6Ec'><q id='KJ6Ec'><span id='KJ6Ec'><b id='KJ6Ec'><form id='KJ6Ec'><ins id='KJ6Ec'></ins><ul id='KJ6Ec'></ul><sub id='KJ6Ec'></sub></form><legend id='KJ6Ec'></legend><bdo id='KJ6Ec'><pre id='KJ6Ec'><center id='KJ6Ec'></center></pre></bdo></b><th id='KJ6Ec'></th></span></q></dt></tr></i><div id='KJ6Ec'><tfoot id='KJ6Ec'></tfoot><dl id='KJ6Ec'><fieldset id='KJ6Ec'></fieldset></dl></div>