我有一个看起来像这样的熊猫数据框:
I have a pandas dataframe that looks like this:
portion used
0 1 1.0
1 2 0.3
2 3 0.0
3 4 0.8
我想基于 used
列创建一个新列,以便 df
看起来像这样:
I'd like to create a new column based on the used
column, so that the df
looks like this:
portion used alert
0 1 1.0 Full
1 2 0.3 Partial
2 3 0.0 Empty
3 4 0.8 Partial
alert
列used
是1.0
,alert
应该是Full
.used
为 0.0
,则 alert
应为 Empty
.alert
应该是 Partial
.
alert
column based onused
is 1.0
, alert
should be Full
.used
is 0.0
, alert
should be Empty
.alert
should be Partial
.最好的方法是什么?
你可以定义一个函数来返回你的不同状态Full"、Partial"、Empty"等,然后使用 df.apply
将函数应用于每一行.请注意,您必须传递关键字参数 axis=1
以确保它将函数应用于行.
You can define a function which returns your different states "Full", "Partial", "Empty", etc and then use df.apply
to apply the function to each row. Note that you have to pass the keyword argument axis=1
to ensure that it applies the function to rows.
import pandas as pd
def alert(row):
if row['used'] == 1.0:
return 'Full'
elif row['used'] == 0.0:
return 'Empty'
elif 0.0 < row['used'] < 1.0:
return 'Partial'
else:
return 'Undefined'
df = pd.DataFrame(data={'portion':[1, 2, 3, 4], 'used':[1.0, 0.3, 0.0, 0.8]})
df['alert'] = df.apply(alert, axis=1)
# portion used alert
# 0 1 1.0 Full
# 1 2 0.3 Partial
# 2 3 0.0 Empty
# 3 4 0.8 Partial
这篇关于使用条件在 pandas 数据框中生成新列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!