我有一个大约 50 列和 >100 行的 pandas 数据框.我想选择列 'col_x'
, 'col_y'
where 'col_z' <米代码>.有没有一种简单的方法可以做到这一点,类似于
df[df['col3'] <m]
和 df[['colx','coly']]
但合并了吗?
I have a pandas dataframe with about 50 columns and >100 rows. I want to select columns 'col_x'
, 'col_y'
where 'col_z' < m
. Is there a simple way to do this, similar to df[df['col3'] < m]
and df[['colx','coly']]
but combined?
让我们分解你的问题.你想
Let's break down your problem. You want to
对于第一点,您需要的条件是 -
For the first point, the condition you'd need is -
df["col_z"] < m
对于第二个要求,您需要指定所需的列列表 -
For the second requirement, you'd want to specify the list of columns that you need -
["col_x", "col_y"]
您将如何将这两者结合起来使用 pandas 产生预期的输出?最直接的方法是使用 loc
-
How would you combine these two to produce an expected output with pandas? The most straightforward way is using loc
-
df.loc[df["col_z"] < m, ["col_x", "col_y"]]
第一个参数选择行,第二个参数选择列.
The first argument selects rows, and the second argument selects columns.
更多关于loc
从关系代数运算的角度来考虑这一点 - 选择和投影.如果您来自 SQL 世界,这将是一个相关的等价物.上面的操作,在 SQL 语法中,看起来像这样 -
Think of this in terms of the relational algebra operations - selection and projection. If you're from the SQL world, this would be a relatable equivalent. The above operation, in SQL syntax, would look like this -
SELECT col_x, col_y # projection on columns
FROM df
WHERE col_z < m # selection on rows
pandas
loc 允许您指定用于选择行的索引标签.例如,如果您有一个数据框 -
pandas
loc allows you to specify index labels for selecting rows. For example, if you have a dataframe -
col_x col_y
a 1 4
b 2 5
c 3 6
要选择索引 a
、c
和 col_x
,您可以使用 -
To select index a
, and c
, and col_x
you'd use -
df.loc[['a', 'c'], ['col_x']]
col_x
a 1
c 3
或者,用于通过布尔条件进行选择(使用一系列/数组 bool
值,正如您最初的问题所问的那样),其中 col_x
中的所有值都是奇数 -
Alternatively, for selecting by a boolean condition (using a series/array of bool
values, as your original question asks), where all values in col_x
are odd -
df.loc[(df.col_x % 2).ne(0), ['col_y']]
col_y
a 4
c 6
详细信息,df.col_x % 2
计算每个值相对于 2
的模数.然后 ne(0)
会将值与 0
进行比较,如果不是则返回 True
(所有奇数都是这样选择的).这是该表达式的结果 -
For details, df.col_x % 2
computes the modulus of each value with respect to 2
. The ne(0)
will then compare the value to 0
, and return True
if it isn't (all odd numbers are selected like this). Here's what that expression results in -
(df.col_x % 2).ne(0)
a True
b False
c True
Name: col_x, dtype: bool
进一步阅读
这篇关于Pandas 根据布尔条件选择行和列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!