一个不规则的时间序列data
存储在一个pandas.DataFrame
中.DatetimeIndex
已设置.我需要索引中连续条目之间的时间差.
An irregular time series data
is stored in a pandas.DataFrame
. A DatetimeIndex
has been set. I need the time difference between consecutive entries in the index.
我以为会很简单
data.index.diff()
但是得到了
AttributeError: 'DatetimeIndex' object has no attribute 'diff'
我试过了
data.index - data.index.shift(1)
但是得到了
ValueError: Cannot shift with no freq
我不想在执行此操作之前先推断或强制执行频率.时间序列中存在很大的差距,这些差距将扩展到 nan
的大量运行.重点是首先找到这些差距.
I do not want to infer or enforce a frequency first before doing this operation. There are large gaps in the time series that would be expanded to large runs of nan
. The point is to find these gaps first.
那么,什么是干净的方法来完成这个看似简单的操作呢?
So, what is a clean way to do this seemingly simple operation?
目前还没有实现index的diff
函数.
There is no implemented diff
function yet for index.
但是,可以先使用 Series.Index.to_series.html" rel="noreferrer">Index.to_series
,如果您需要保留原始索引.如果需要默认索引,请使用不带索引参数的 Series
构造函数.
However, it is possible to convert the index to a Series
first by using Index.to_series
, if you need to preserve the original index. Use the Series
constructor with no index parameter if the default index is needed.
代码示例:
rng = pd.to_datetime(['2015-01-10','2015-01-12','2015-01-13'])
data = pd.DataFrame({'a': range(3)}, index=rng)
print(data)
a
2015-01-10 0
2015-01-12 1
2015-01-13 2
a = data.index.to_series().diff()
print(a)
2015-01-10 NaT
2015-01-12 2 days
2015-01-13 1 days
dtype: timedelta64[ns]
a = pd.Series(data.index).diff()
print(a)
0 NaT
1 2 days
2 1 days
dtype: timedelta64[ns]
这篇关于没有频率的差异 pandas.DateTimeIndex的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!