我有一个时间序列 x[0], x[1], ... x[n-1]
,存储为一维 numpy
数组.我想将其转换为以下矩阵:
I have a time series x[0], x[1], ... x[n-1]
, stored as a 1 dimensional numpy
array. I would like to convert it to the following matrix:
NaN, ... , NaN , x[0]
NaN, ... , x[0], x[1]
.
.
NaN, x[0], ... , x[n-3],x[n-2]
x[0], x[1], ... , x[n-2],x[n-1]
我想使用这个矩阵来加速时间序列计算.numpy
或 scipy
中是否有函数可以执行此操作?(我不想在python中使用for循环来做)
I would like to use this matrix to speedup time-series calculations. Is there a function in numpy
or scipy
to do this? (I don't want to use for loop in python to do it)
一种方法 np.lib.stride_tricks.as_strided
-
One approach with np.lib.stride_tricks.as_strided
-
def nanpad_sliding2D(a):
L = a.size
a_ext = np.concatenate(( np.full(a.size-1,np.nan) ,a))
n = a_ext.strides[0]
strided = np.lib.stride_tricks.as_strided
return strided(a_ext, shape=(L,L), strides=(n,n))
示例运行 -
In [41]: a
Out[41]: array([48, 82, 96, 34, 93, 25, 51, 26])
In [42]: nanpad_sliding2D(a)
Out[42]:
array([[ nan, nan, nan, nan, nan, nan, nan, 48.],
[ nan, nan, nan, nan, nan, nan, 48., 82.],
[ nan, nan, nan, nan, nan, 48., 82., 96.],
[ nan, nan, nan, nan, 48., 82., 96., 34.],
[ nan, nan, nan, 48., 82., 96., 34., 93.],
[ nan, nan, 48., 82., 96., 34., 93., 25.],
[ nan, 48., 82., 96., 34., 93., 25., 51.],
[ 48., 82., 96., 34., 93., 25., 51., 26.]])
strides
正如@Eric 的评论中所提到的,这种基于步幅的方法将是一种内存效率高的方法,因为输出只是对 NaNs-padded
1D
的视图版本.让我们测试一下 -
As mentioned in the comments by @Eric, this strides based approach would be a memory efficient one as the output would be simply a view into the NaNs-padded
1D
version. Let's test this out -
In [158]: a # Sample 1D input
Out[158]: array([37, 95, 87, 10, 35])
In [159]: L = a.size # Run the posted approach
...: a_ext = np.concatenate(( np.full(a.size-1,np.nan) ,a))
...: n = a_ext.strides[0]
...: strided = np.lib.stride_tricks.as_strided
...: out = strided(a_ext, shape=(L,L), strides=(n,n))
...:
In [160]: np.may_share_memory(a_ext,out) O/p might be a view into extended version
Out[160]: True
让我们通过将值赋给 a_ext
然后检查 out
来确认输出确实是一个视图.
Let's confirm that the output is actually a view indeed by assigning values into a_ext
and then checking out
.
a_ext
和 out
的初始值:
In [161]: a_ext
Out[161]: array([ nan, nan, nan, nan, 37., 95., 87., 10., 35.])
In [162]: out
Out[162]:
array([[ nan, nan, nan, nan, 37.],
[ nan, nan, nan, 37., 95.],
[ nan, nan, 37., 95., 87.],
[ nan, 37., 95., 87., 10.],
[ 37., 95., 87., 10., 35.]])
修改a_ext
:
In [163]: a_ext[:] = 100
查看新的out
:
In [164]: out
Out[164]:
array([[ 100., 100., 100., 100., 100.],
[ 100., 100., 100., 100., 100.],
[ 100., 100., 100., 100., 100.],
[ 100., 100., 100., 100., 100.],
[ 100., 100., 100., 100., 100.]])
确认这是一个视图.
最后,让我们测试一下内存需求:
Finally, let's test out the memory requirements :
In [131]: a_ext.nbytes
Out[131]: 72
In [132]: out.nbytes
Out[132]: 200
因此,即使显示为 200
字节的输出实际上也只是 72
字节,因为它是扩展数组的视图,其大小为 72
个字节.
So, the output even though it shows as 200
bytes is actually just 72
bytes because of being a view into the extended array that has a size of 72
bytes.
Scipy's toeplitz
-
from scipy.linalg import toeplitz
out = toeplitz(a, np.full(a.size,np.nan) )[:,::-1]
这篇关于从一维 NumPy 数组中创建 NaN 填充元素的滑动窗口的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!