尽管通过 srand()
使用种子,但通常不赞成使用 rand()
.为什么会是这样?有哪些更好的替代方案?
Usage of rand()
is usually frowned upon despite using a seed via srand()
. Why would that be the case? What better alternatives are available?
这个故事有两个部分.
首先,rand
是一个伪随机数生成器.这意味着它取决于种子.对于给定的种子,它总是给出相同的序列(假设实现相同).这使得它不适合某些安全性非常重要的应用程序.但是这并不特定于rand
.这是任何伪随机生成器的问题.并且肯定有很多类别的问题可以接受伪随机生成器.真随机生成器有其自身的问题(效率、实现、熵),因此对于与安全无关的问题,通常使用伪随机生成器.
First, rand
is a pseudorandom number generator. This means it depends on a seed. For a given seed it will always give the same sequence (assuming the same implementation). This makes it not suitable for certain applications where security is of a great concern. But this is not specific to rand
. It's an issue with any pseudo-random generator. And there are most certainly a lot of classes of problems where a pseudo-random generator is acceptable. A true random generator has its own issues (efficiency, implementation, entropy) so for problems that are not security related most often a pseudo-random generator is used.
所以您分析了您的问题并得出结论,伪随机生成器是解决方案.在这里,我们遇到了 C 随机库(包括 rand
和 srand
)的真正麻烦,这些库是特定于它的,并使其过时(又名:您应该从不使用 rand
和 C 随机库的原因).
So you analyzed your problem and you conclude a pseudo-random generator is the solution. And here we arrive to the real troubles with the C random library (which includes rand
and srand
) that are specific to it and make it obsolete (a.k.a.: the reasons you should never use rand
and the C random library).
一个问题是它有全局状态(由srand
设置).这使得无法同时使用多个随机引擎.它还使多线程任务变得非常复杂.
One issue is that it has a global state (set by srand
). This makes it impossible to use multiple random engines at the same time. It also greatly complicates multithreaded tasks.
其中最明显的问题是缺少分发引擎:rand
给你一个区间[0 RAND_MAX]代码>.在这个区间是一致的,也就是说这个区间的每个数字出现的概率都是一样的.但大多数情况下,您需要一个特定时间间隔内的随机数.假设
[0, 1017]
.一个常用的(也很简单的)公式是 rand() % 1018
.但问题在于,除非 RAND_MAX
是 1018
的精确倍数,否则您不会得到均匀分布.
The most visible problem of it is that it lacks a distribution engine: rand
gives you a number in interval [0 RAND_MAX]
. It is uniform in this interval, which means that each number in this interval has the same probability to appear. But most often you need a random number in a specific interval. Let's say [0, 1017]
. A commonly (and naive) used formula is rand() % 1018
. But the issue with this is that unless RAND_MAX
is an exact multiple of 1018
you won't get an uniform distribution.
另一个问题是rand
的实现质量.这里还有其他答案比我更详细地说明了这一点,所以请阅读它们.
Another issue is the Quality of Implementation of rand
. There are other answers here detailing this better than I could, so please read them.
在现代 C++ 中,您绝对应该使用 <random>
中的 C++ 库,它带有多个定义良好的随机引擎以及整数和浮点类型的各种分布.
In modern C++ you should definitely use the C++ library from <random>
which comes with multiple random well-defined engines and various distributions for integer and floating point types.
这篇关于为什么 rand() 的使用被认为是不好的?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!