• <i id='R66Xj'><tr id='R66Xj'><dt id='R66Xj'><q id='R66Xj'><span id='R66Xj'><b id='R66Xj'><form id='R66Xj'><ins id='R66Xj'></ins><ul id='R66Xj'></ul><sub id='R66Xj'></sub></form><legend id='R66Xj'></legend><bdo id='R66Xj'><pre id='R66Xj'><center id='R66Xj'></center></pre></bdo></b><th id='R66Xj'></th></span></q></dt></tr></i><div id='R66Xj'><tfoot id='R66Xj'></tfoot><dl id='R66Xj'><fieldset id='R66Xj'></fieldset></dl></div>
    <tfoot id='R66Xj'></tfoot>

    <small id='R66Xj'></small><noframes id='R66Xj'>

    <legend id='R66Xj'><style id='R66Xj'><dir id='R66Xj'><q id='R66Xj'></q></dir></style></legend>
    • <bdo id='R66Xj'></bdo><ul id='R66Xj'></ul>

      1. 具有大型数据集的 DC 和交叉过滤器

        时间:2023-09-29
        <tfoot id='JcEaY'></tfoot>

        <small id='JcEaY'></small><noframes id='JcEaY'>

          • <i id='JcEaY'><tr id='JcEaY'><dt id='JcEaY'><q id='JcEaY'><span id='JcEaY'><b id='JcEaY'><form id='JcEaY'><ins id='JcEaY'></ins><ul id='JcEaY'></ul><sub id='JcEaY'></sub></form><legend id='JcEaY'></legend><bdo id='JcEaY'><pre id='JcEaY'><center id='JcEaY'></center></pre></bdo></b><th id='JcEaY'></th></span></q></dt></tr></i><div id='JcEaY'><tfoot id='JcEaY'></tfoot><dl id='JcEaY'><fieldset id='JcEaY'></fieldset></dl></div>
                <tbody id='JcEaY'></tbody>

                  <bdo id='JcEaY'></bdo><ul id='JcEaY'></ul>

                  <legend id='JcEaY'><style id='JcEaY'><dir id='JcEaY'><q id='JcEaY'></q></dir></style></legend>

                  本文介绍了具有大型数据集的 DC 和交叉过滤器的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我一直在研究 dc 和 crossfilter js,我目前有一个包含 550,000 行和 60mb 大小的 csv 的大型数据集,并且面临很多问题,例如浏览器崩溃等

                  I have been working on dc and crossfilter js and I currently have a large dataset with 550,000 rows and size 60mb csv and am facing a lot of issues with it like browser crashes etc

                  所以,我试图了解 dc 和 crossfilter 如何处理大型数据集.http://dc-js.github.io/dc.js/

                  So , I'm trying to understand how dc and crossfilter deals with large datasets. http://dc-js.github.io/dc.js/

                  他们主站点上的示例运行非常顺利,在查看时间线->内存(在控制台中)后,它达到最大 34 mb,并随着时间慢慢减少

                  The example on their main site runs very smoothly and after seeing timelines->memory (in console) it goes to a max of 34 mb and slowly reduces with time

                  我的项目在加载 json 文件并呈现整个可视化时,每个下拉选择占用 300-500mb 范围内的内存

                  My project is taking up memory in the range of 300-500mb per dropdown selection, when it loads a json file and renders the entire visualization

                  那么,两个问题

                  • dc 站点示例的后端是什么?是否可以找到确切的后端文件?
                  • 如何减少我的应用程序在我的 RAM 上的数据过载,该应用程序运行非常缓慢并最终崩溃?

                  推荐答案

                  您好,您可以尝试运行加载数据,并在服务器上对其进行过滤.当我的数据集太大而浏览器无法处理时,我遇到了类似的问题.几周前我发布了一个关于实施相同的问题.在客户端使用 dc.js 和 crossfilter在服务器上

                  Hi you can try running loading the data, and filtering it on the server. I faced a similar problem when the size of my dataset was being too big for the browser to handle. I posted a question a few weeks back as to implementing the same. Using dc.js on the clientside with crossfilter on the server

                  这里是关于它的概述.

                  在客户端,您希望创建具有 dc.js 所期望的基本功能的假维度和假组(https://github.com/dc-js/dc.js/wiki/FAQ#filter-the-data-before-它的图表).您可以在客户端创建 dc.js 图表,并在需要的地方插入虚假维度和组.

                  On the client side, you'd want to create fake dimensions and fake groups that have basic functionality that dc.js expects(https://github.com/dc-js/dc.js/wiki/FAQ#filter-the-data-before-its-charted). You create your dc.js charts on the client side and plug in the fake dimensions and groups wherever required.

                  现在在服务器端你有交叉过滤器运行(https://www.npmjs.org/package/交叉过滤器).您可以在此处创建实际维度和组.

                  Now on the server side you have crossfilter running(https://www.npmjs.org/package/crossfilter). You create your actual dimensions and groups here.

                  fakedimensions 有一个 .filter() 函数,它基本上向服务器发送一个 ajax 请求以执行实际过滤.过滤信息可以以查询字符串的形式编码.你还需要一个 .all() 在你的假组上的函数来返回过滤的结果.

                  The fakedimensions have a .filter() function that basically sends an ajax request to the server to perform the actual filtering. The filtering information could be encoded in the form of a query string. You'd also need a .all() function on your fake group to return the results of the filtering.

                  这篇关于具有大型数据集的 DC 和交叉过滤器的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  上一篇:成功堆叠多个 AJAX 请求(jQuery) 下一篇:检测 IE 的 Metro UI 版本

                  相关文章

                      <i id='sfYtl'><tr id='sfYtl'><dt id='sfYtl'><q id='sfYtl'><span id='sfYtl'><b id='sfYtl'><form id='sfYtl'><ins id='sfYtl'></ins><ul id='sfYtl'></ul><sub id='sfYtl'></sub></form><legend id='sfYtl'></legend><bdo id='sfYtl'><pre id='sfYtl'><center id='sfYtl'></center></pre></bdo></b><th id='sfYtl'></th></span></q></dt></tr></i><div id='sfYtl'><tfoot id='sfYtl'></tfoot><dl id='sfYtl'><fieldset id='sfYtl'></fieldset></dl></div>
                      <tfoot id='sfYtl'></tfoot>

                        <bdo id='sfYtl'></bdo><ul id='sfYtl'></ul>
                    1. <small id='sfYtl'></small><noframes id='sfYtl'>

                    2. <legend id='sfYtl'><style id='sfYtl'><dir id='sfYtl'><q id='sfYtl'></q></dir></style></legend>