假设我有以下数据示例:
df = pd.DataFrame({'date':['2011-01-01','2011-01-02',
'2011-01-03','2011-01-04','2011-01-05',
'2011-01-06','2011-01-07','2011-01-08',
'2011-01-09','2011-12-30','2011-12-31'],
'revenue':[5,3,2,
10,12,2,
1,0,6,10,12]})
# Let's format the date and add the week number and year
df['date'] = pd.to_datetime(df['date'],format='%Y-%m-%d')
df['week_number'] = df['date'].dt.week
df['year'] = df['date'].dt.year
df
date revenue week_of_year year
0 2011-01-01 5 52 2011
1 2011-01-02 3 52 2011
2 2011-01-03 2 1 2011
3 2011-01-04 10 1 2011
4 2011-01-05 12 1 2011
5 2011-01-06 2 1 2011
6 2011-01-07 1 1 2011
7 2011-01-08 0 1 2011
8 2011-01-09 6 1 2011
9 2011-12-30 10 52 2011
10 2011-12-31 12 52 2011
我想计算每周的收入,以便稍后绘制结果,并分析时间序列。然后,预期输出将如下所示:
week revenue
0 1 8
1 2 33
2 52 22
我首先想到使用timestamp.week
给出的周数。
但是,我想不出如何处理第1周之前一周的ISO周数定义。我有点困惑,因为在这种情况下,按week_number
分组会将年初的收入和年底的收入相加。
当您使用dt.Week进行转换时,它是ISO week date。
您可以使用strftime
df.groupby(df.date.dt.strftime('%W')).revenue.sum()
Out[588]:
date
00 8
01 33
52 22
Name: revenue, dtype: int64
这篇关于给定日期时间列的 pandas 按周分组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!