我正在使用pytorch-1.5
执行一些gan
测试。我的代码是非常简单的GAN代码,正好适合sin(X)函数:
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001
LR_D = 0.0001
N_IDEAS = 5
ART_COMPONENTS = 15
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])
def artist_works(): # painting from the famous artist (real target)
r = 0.02 * np.random.randn(1, ART_COMPONENTS)
paintings = np.sin(PAINT_POINTS * np.pi) + r
paintings = torch.from_numpy(paintings).float()
return paintings
G = nn.Sequential( # Generator
nn.Linear(N_IDEAS, 128), # random ideas (could from normal distribution)
nn.ReLU(),
nn.Linear(128, ART_COMPONENTS), # making a painting from these random ideas
)
D = nn.Sequential( # Discriminator
nn.Linear(ART_COMPONENTS, 128), # receive art work either from the famous artist or a newbie like G
nn.ReLU(),
nn.Linear(128, 1),
nn.Sigmoid(), # tell the probability that the art work is made by artist
)
opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)
for step in range(10000):
artist_paintings = artist_works() # real painting from artist
G_ideas = torch.randn(BATCH_SIZE, N_IDEAS) # random ideas
G_paintings = G(G_ideas) # fake painting from G (random ideas)
prob_artist0 = D(artist_paintings) # D try to increase this prob
prob_artist1 = D(G_paintings) # D try to reduce this prob
D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))
G_loss = torch.mean(torch.log(1. - prob_artist1))
opt_D.zero_grad()
D_loss.backward(retain_graph=True) # reusing computational graph
opt_D.step()
opt_G.zero_grad()
G_loss.backward()
opt_G.step()
但是当我运行它时得到以下错误:
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [128, 1]], which is output 0 of TBackward, is at version 2; expected version 1 instead. Hint: the backtrace further above shows the operation that failed to compute its gradient. The variable in question was changed in there or anywhere later. Good luck!
我的代码是否有问题?
发生这种情况是因为opt_d.step()就地修改了鉴别器的参数。但是这些参数是计算生成器的梯度所必需的。您可以通过将代码更改为:
来修复此问题for step in range(10000):
artist_paintings = artist_works() # real painting from artist
G_ideas = torch.randn(BATCH_SIZE, N_IDEAS) # random ideas
G_paintings = G(G_ideas) # fake painting from G (random ideas)
prob_artist1 = D(G_paintings) # G tries to fool D
G_loss = torch.mean(torch.log(1. - prob_artist1))
opt_G.zero_grad()
G_loss.backward()
opt_G.step()
prob_artist0 = D(artist_paintings) # D try to increase this prob
# detach here to make sure we don't backprop in G that was already changed.
prob_artist1 = D(G_paintings.detach()) # D try to reduce this prob
D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))
opt_D.zero_grad()
D_loss.backward(retain_graph=True) # reusing computational graph
opt_D.step()
您可以在此处找到有关此问题的更多信息https://github.com/pytorch/pytorch/issues/39141
这篇关于RuntimeError:渐变计算所需的变量之一已被原地操作修改?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!