<small id='q2Cfm'></small><noframes id='q2Cfm'>

    <tfoot id='q2Cfm'></tfoot>
  • <legend id='q2Cfm'><style id='q2Cfm'><dir id='q2Cfm'><q id='q2Cfm'></q></dir></style></legend>
      <bdo id='q2Cfm'></bdo><ul id='q2Cfm'></ul>

        <i id='q2Cfm'><tr id='q2Cfm'><dt id='q2Cfm'><q id='q2Cfm'><span id='q2Cfm'><b id='q2Cfm'><form id='q2Cfm'><ins id='q2Cfm'></ins><ul id='q2Cfm'></ul><sub id='q2Cfm'></sub></form><legend id='q2Cfm'></legend><bdo id='q2Cfm'><pre id='q2Cfm'><center id='q2Cfm'></center></pre></bdo></b><th id='q2Cfm'></th></span></q></dt></tr></i><div id='q2Cfm'><tfoot id='q2Cfm'></tfoot><dl id='q2Cfm'><fieldset id='q2Cfm'></fieldset></dl></div>
      1. 移动平均线 pandas

        时间:2024-04-21
        • <legend id='elsOH'><style id='elsOH'><dir id='elsOH'><q id='elsOH'></q></dir></style></legend>
              <bdo id='elsOH'></bdo><ul id='elsOH'></ul>

                <small id='elsOH'></small><noframes id='elsOH'>

                <i id='elsOH'><tr id='elsOH'><dt id='elsOH'><q id='elsOH'><span id='elsOH'><b id='elsOH'><form id='elsOH'><ins id='elsOH'></ins><ul id='elsOH'></ul><sub id='elsOH'></sub></form><legend id='elsOH'></legend><bdo id='elsOH'><pre id='elsOH'><center id='elsOH'></center></pre></bdo></b><th id='elsOH'></th></span></q></dt></tr></i><div id='elsOH'><tfoot id='elsOH'></tfoot><dl id='elsOH'><fieldset id='elsOH'></fieldset></dl></div>

              • <tfoot id='elsOH'></tfoot>
                  <tbody id='elsOH'></tbody>

                1. 本文介绍了移动平均线 pandas 的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我想在我的交易时间序列中添加移动平均计算.

                  I would like to add a moving average calculation to my exchange time series.

                  来自 Quandl

                  Exchange = Quandl.get("BUNDESBANK/BBEX3_D_SEK_USD_CA_AC_000",
                                        authtoken="xxxxxxx")
                  
                  #               Value
                  # Date               
                  # 1989-01-02  6.10500
                  # 1989-01-03  6.07500
                  # 1989-01-04  6.10750
                  # 1989-01-05  6.15250
                  # 1989-01-09  6.25500
                  # 1989-01-10  6.24250
                  # 1989-01-11  6.26250
                  # 1989-01-12  6.23250
                  # 1989-01-13  6.27750
                  # 1989-01-16  6.31250
                  
                  # Calculating Moving Avarage
                  MovingAverage = pd.rolling_mean(Exchange,5)
                  
                  #               Value
                  # Date          
                  # 1989-01-02      NaN
                  # 1989-01-03      NaN
                  # 1989-01-04      NaN
                  # 1989-01-05      NaN
                  # 1989-01-09  6.13900
                  # 1989-01-10  6.16650
                  # 1989-01-11  6.20400
                  # 1989-01-12  6.22900
                  # 1989-01-13  6.25400
                  # 1989-01-16  6.26550
                  

                  我想使用相同的索引 (Date) 在 Value 之后将计算出的移动平均线作为一个新列添加到右侧.最好我还想将计算出的移动平均线重命名为 MA.

                  I would like to add the calculated Moving Average as a new column to the right after Value using the same index (Date). Preferably I would also like to rename the calculated moving average to MA.

                  推荐答案

                  滚动平均值返回一个 Series 您只需将其添加为 DataFrame 的新列(MA) 如下所述.

                  The rolling mean returns a Series you only have to add it as a new column of your DataFrame (MA) as described below.

                  有关信息,rolling_mean 函数已在 pandas 较新版本中被弃用.我在示例中使用了新方法,请参阅下面来自 pandas 文档.

                  For information, the rolling_mean function has been deprecated in pandas newer versions. I have used the new method in my example, see below a quote from the pandas documentation.

                  警告 0.18.0 之前的版本、pd.rolling_*pd.expanding_*pd.ewm* 是模块级函数,现在已弃用.这些通过使用 RollingExpandingEWM. 对象以及相应的方法调用来替换.

                  Warning Prior to version 0.18.0, pd.rolling_*, pd.expanding_*, and pd.ewm* were module level functions and are now deprecated. These are replaced by using the Rolling, Expanding and EWM. objects and a corresponding method call.

                  df['MA'] = df.rolling(window=5).mean()
                  
                  print(df)
                  #             Value    MA
                  # Date                   
                  # 1989-01-02   6.11   NaN
                  # 1989-01-03   6.08   NaN
                  # 1989-01-04   6.11   NaN
                  # 1989-01-05   6.15   NaN
                  # 1989-01-09   6.25  6.14
                  # 1989-01-10   6.24  6.17
                  # 1989-01-11   6.26  6.20
                  # 1989-01-12   6.23  6.23
                  # 1989-01-13   6.28  6.25
                  # 1989-01-16   6.31  6.27
                  

                  这篇关于移动平均线 pandas 的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  上一篇:用 python 3 解开一个 python 2 对象 下一篇:Python 3:读取一行时的 EOF(Sublime Text 2 很生气)

                  相关文章

                      <bdo id='MS7fW'></bdo><ul id='MS7fW'></ul>
                    <legend id='MS7fW'><style id='MS7fW'><dir id='MS7fW'><q id='MS7fW'></q></dir></style></legend>
                    1. <small id='MS7fW'></small><noframes id='MS7fW'>

                      <i id='MS7fW'><tr id='MS7fW'><dt id='MS7fW'><q id='MS7fW'><span id='MS7fW'><b id='MS7fW'><form id='MS7fW'><ins id='MS7fW'></ins><ul id='MS7fW'></ul><sub id='MS7fW'></sub></form><legend id='MS7fW'></legend><bdo id='MS7fW'><pre id='MS7fW'><center id='MS7fW'></center></pre></bdo></b><th id='MS7fW'></th></span></q></dt></tr></i><div id='MS7fW'><tfoot id='MS7fW'></tfoot><dl id='MS7fW'><fieldset id='MS7fW'></fieldset></dl></div>

                      <tfoot id='MS7fW'></tfoot>