• <small id='K9AHZ'></small><noframes id='K9AHZ'>

    1. <legend id='K9AHZ'><style id='K9AHZ'><dir id='K9AHZ'><q id='K9AHZ'></q></dir></style></legend>
    2. <i id='K9AHZ'><tr id='K9AHZ'><dt id='K9AHZ'><q id='K9AHZ'><span id='K9AHZ'><b id='K9AHZ'><form id='K9AHZ'><ins id='K9AHZ'></ins><ul id='K9AHZ'></ul><sub id='K9AHZ'></sub></form><legend id='K9AHZ'></legend><bdo id='K9AHZ'><pre id='K9AHZ'><center id='K9AHZ'></center></pre></bdo></b><th id='K9AHZ'></th></span></q></dt></tr></i><div id='K9AHZ'><tfoot id='K9AHZ'></tfoot><dl id='K9AHZ'><fieldset id='K9AHZ'></fieldset></dl></div>
        <bdo id='K9AHZ'></bdo><ul id='K9AHZ'></ul>

        <tfoot id='K9AHZ'></tfoot>
      1. 如何将 pandas 数据框的数据类型更改为具有定义格式的字符串?

        时间:2023-06-06

        1. <small id='Rsytg'></small><noframes id='Rsytg'>

            <bdo id='Rsytg'></bdo><ul id='Rsytg'></ul>
          • <tfoot id='Rsytg'></tfoot>
            <legend id='Rsytg'><style id='Rsytg'><dir id='Rsytg'><q id='Rsytg'></q></dir></style></legend>
            <i id='Rsytg'><tr id='Rsytg'><dt id='Rsytg'><q id='Rsytg'><span id='Rsytg'><b id='Rsytg'><form id='Rsytg'><ins id='Rsytg'></ins><ul id='Rsytg'></ul><sub id='Rsytg'></sub></form><legend id='Rsytg'></legend><bdo id='Rsytg'><pre id='Rsytg'><center id='Rsytg'></center></pre></bdo></b><th id='Rsytg'></th></span></q></dt></tr></i><div id='Rsytg'><tfoot id='Rsytg'></tfoot><dl id='Rsytg'><fieldset id='Rsytg'></fieldset></dl></div>
                  <tbody id='Rsytg'></tbody>

                • 本文介绍了如何将 pandas 数据框的数据类型更改为具有定义格式的字符串?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我开始为此扯头发 - 所以我希望有人能提供帮助.我有一个使用 openpyxl 从 Excel 电子表格创建的 pandas DataFrame.生成的 DataFrame 如下所示:

                  I'm starting to tear my hair out with this - so I hope someone can help. I have a pandas DataFrame that was created from an Excel spreadsheet using openpyxl. The resulting DataFrame looks like:

                  print image_name_data
                       id           image_name
                  0  1001  1001_mar2014_report
                  1  1002  1002_mar2014_report
                  2  1003  1003_mar2014_report
                  
                  [3 rows x 2 columns]
                  

                  …具有以下数据类型:

                  print image_name_data.dtypes
                  id            float64
                  image_name     object
                  dtype: object
                  

                  问题在于 id 列中的数字实际上是标识号,我需要将它们视为字符串.我尝试使用以下方法将 id 列转换为字符串:

                  The issue is that the numbers in the id column are, in fact, identification numbers and I need to treat them as strings. I've tried converting the id column to strings using:

                  image_name_data['id'] = image_name_data['id'].astype('str')
                  

                  这看起来有点难看,但它确实产生了一个类型为object"而不是float64"的变量:

                  This seems a bit ugly but it does produce a variable of type 'object' rather than 'float64':

                  print image_name_data.dyptes
                  id            object
                  image_name    object
                  dtype: object
                  

                  但是,创建的字符串有一个小数点,如图:

                  However, the strings that are created have a decimal point, as shown:

                  print image_name_data
                         id           image_name
                  0  1001.0  1001_mar2014_report
                  1  1002.0  1002_mar2014_report
                  2  1003.0  1003_mar2014_report
                  
                  [3 rows x 2 columns]
                  

                  如何将 pandas DataFrame 中的 float64 列转换为具有给定格式的字符串(在本例中,例如 '%10.0f')?

                  How can I convert a float64 column in a pandas DataFrame to a string with a given format (in this case, for example, '%10.0f')?

                  推荐答案

                  我无法重现您的问题,但您是否尝试过先将其转换为整数?

                  I'm unable to reproduce your problem but have you tried converting it to an integer first?

                  image_name_data['id'] = image_name_data['id'].astype(int).astype('str')
                  

                  然后,关于您更一般的问题,您可以使用 map (在这个答案中).在你的情况下:

                  Then, regarding your more general question you could use map (as in this answer). In your case:

                  image_name_data['id'] = image_name_data['id'].map('{:.0f}'.format)
                  

                  这篇关于如何将 pandas 数据框的数据类型更改为具有定义格式的字符串?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  上一篇:Python3 - 在字符串格式化程序参数中使用变量 下一篇:ValueError:python格式的零长度字段名称

                  相关文章

                    <bdo id='RoTsp'></bdo><ul id='RoTsp'></ul>
                • <legend id='RoTsp'><style id='RoTsp'><dir id='RoTsp'><q id='RoTsp'></q></dir></style></legend>

                  <small id='RoTsp'></small><noframes id='RoTsp'>

                  <tfoot id='RoTsp'></tfoot>
                  1. <i id='RoTsp'><tr id='RoTsp'><dt id='RoTsp'><q id='RoTsp'><span id='RoTsp'><b id='RoTsp'><form id='RoTsp'><ins id='RoTsp'></ins><ul id='RoTsp'></ul><sub id='RoTsp'></sub></form><legend id='RoTsp'></legend><bdo id='RoTsp'><pre id='RoTsp'><center id='RoTsp'></center></pre></bdo></b><th id='RoTsp'></th></span></q></dt></tr></i><div id='RoTsp'><tfoot id='RoTsp'></tfoot><dl id='RoTsp'><fieldset id='RoTsp'></fieldset></dl></div>