我正在尝试为包含从 0 到 9 的数字的数据集中的图像的 tSNE 嵌入生成 3D 散点图.我还想用数据集中的图像注释这些点.
在浏览了与该问题相关的现有资源后,我发现使用 matplotlib.offsetbox 可以轻松完成 2D 散点图,如上所述
上述解决方案是静态的.这意味着如果绘图被旋转或缩放,注释将不再指向正确的位置.为了同步注释,可以连接到绘图事件并检查限制或视角是否发生了变化,并相应地更新注释坐标.(2019 年较新版本还需要将事件从顶部 2D 轴传递到底部 3D 轴;代码已更新)
从 mpl_toolkits.mplot3d 导入 Axes3D从 mpl_toolkits.mplot3d 导入 proj3d将 matplotlib.pyplot 导入为 plt从 matplotlib 导入偏移框将 numpy 导入为 npxs = [1,1.5,2,2]ys = [1,2,3,1]zs = [0,1,2,0]c = ["b","r","g","黄金"]无花果 = plt.figure()ax = fig.add_subplot(111, projection=Axes3D.name)ax.scatter(xs, ys, zs, c=c, marker="o")# 创建一个虚拟轴来放置注释ax2 = fig.add_subplot(111,frame_on=False)ax2.axis("关闭")ax2.axis([0,1,0,1])类 ImageAnnotations3D():def __init__(self, xyz, imgs, ax3d,ax2d):自我.xyz = xyzself.imgs = imgsself.ax3d = ax3dself.ax2d = ax2dself.annot = []对于 s,im in zip(self.xyz, self.imgs):x,y = self.proj(s)self.annot.append(self.image(im,[x,y]))self.lim = self.ax3d.get_w_lims()self.rot = self.ax3d.get_proj()self.cid = self.ax3d.figure.canvas.mpl_connect("draw_event",self.update)self.funcmap = {button_press_event":self.ax3d._button_press,motion_notify_event":self.ax3d._on_move,button_release_event":self.ax3d._button_release}self.cfs = [self.ax3d.figure.canvas.mpl_connect(kind, self.cb) 对于 self.funcmap.keys() 中的种类]def cb(自我,事件):event.inaxes = self.ax3dself.funcmap[event.name](事件)定义项目(自我,X):""" 从轴 ax1 中的一个 3D 点,在 ax2 """ 中计算二维位置x,y,z = Xx2, y2, _ = proj3d.proj_transform(x,y,z, self.ax3d.get_proj())tr = self.ax3d.transData.transform((x2, y2))返回 self.ax2d.transData.inverted().transform(tr)def 图像(自我,arr,xy):""" 将图像 (arr) 作为注释放置在 xy 位置 """im = offsetbox.OffsetImage(arr, zoom=2)im.image.axes = 斧头ab = offsetbox.AnnotationBbox(im, xy, xybox=(-30., 30.),xycoords='data', boxcoords="offset points",垫=0.3,箭头道具=dict(箭头样式=->"))self.ax2d.add_artist(ab)返回ab定义更新(自我,事件):如果 np.any(self.ax3d.get_w_lims() != self.lim) 或
p.any(self.ax3d.get_proj()!= self.rot):self.lim = self.ax3d.get_w_lims()self.rot = self.ax3d.get_proj()对于 s,ab in zip(self.xyz, self.annot):ab.xy = self.proj(s)imgs = [np.random.rand(10,10) for i in range(len(xs))]ia = ImageAnnotations3D(np.c_[xs,ys,zs],imgs,ax, ax2 )ax.set_xlabel('X 标签')ax.set_ylabel('Y 标签')ax.set_zlabel('Z 标签')plt.show()
I am trying to generate a 3D scatter plot for tSNE embeddings of images from a dataset containing digits from 0 to 9. I would also like to annotate the points with the images from the dataset.
After going through existing resources pertaining the issue, I found that it can be done easily for 2D scatter plot with matplotlib.offsetbox as mentioned here.
There is also a question on SO relating to 3D annotation but with text only. Does anyone know how to annotate with image instead of text ?
Thanks !
The matplotlib.offsetbox does not work in 3D. As a workaround one may use a 2D axes overlaying the 3D plot and place the image annotation to that 2D axes at the position which corresponds to the position in the 3D axes.
To calculate the coordinates of those positions, one may refer to How to transform 3d data units to display units with matplotlib?. Then one may use the inverse transform of those display coordinates to obtain the new coordinates in the overlay axes.
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d import proj3d
import matplotlib.pyplot as plt
from matplotlib import offsetbox
import numpy as np
xs = [1,1.5,2,2]
ys = [1,2,3,1]
zs = [0,1,2,0]
c = ["b","r","g","gold"]
fig = plt.figure()
ax = fig.add_subplot(111, projection=Axes3D.name)
ax.scatter(xs, ys, zs, c=c, marker="o")
# Create a dummy axes to place annotations to
ax2 = fig.add_subplot(111,frame_on=False)
ax2.axis("off")
ax2.axis([0,1,0,1])
def proj(X, ax1, ax2):
""" From a 3D point in axes ax1,
calculate position in 2D in ax2 """
x,y,z = X
x2, y2, _ = proj3d.proj_transform(x,y,z, ax1.get_proj())
return ax2.transData.inverted().transform(ax1.transData.transform((x2, y2)))
def image(ax,arr,xy):
""" Place an image (arr) as annotation at position xy """
im = offsetbox.OffsetImage(arr, zoom=2)
im.image.axes = ax
ab = offsetbox.AnnotationBbox(im, xy, xybox=(-30., 30.),
xycoords='data', boxcoords="offset points",
pad=0.3, arrowprops=dict(arrowstyle="->"))
ax.add_artist(ab)
for s in zip(xs,ys,zs):
x,y = proj(s, ax, ax2)
image(ax2,np.random.rand(10,10),[x,y])
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
The above solution is static. This means if the plot is rotated or zoomed, the annotations will not point to the correct locations any more. In order to synchronize the annoations, one may connect to the draw event and check if either the limits or the viewing angles have changed and update the annotation coordinates accordingly. (Edit in 2019: Newer versions also require to pass on the events from the top 2D axes to the bottom 3D axes; code updated)
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d import proj3d
import matplotlib.pyplot as plt
from matplotlib import offsetbox
import numpy as np
xs = [1,1.5,2,2]
ys = [1,2,3,1]
zs = [0,1,2,0]
c = ["b","r","g","gold"]
fig = plt.figure()
ax = fig.add_subplot(111, projection=Axes3D.name)
ax.scatter(xs, ys, zs, c=c, marker="o")
# Create a dummy axes to place annotations to
ax2 = fig.add_subplot(111,frame_on=False)
ax2.axis("off")
ax2.axis([0,1,0,1])
class ImageAnnotations3D():
def __init__(self, xyz, imgs, ax3d,ax2d):
self.xyz = xyz
self.imgs = imgs
self.ax3d = ax3d
self.ax2d = ax2d
self.annot = []
for s,im in zip(self.xyz, self.imgs):
x,y = self.proj(s)
self.annot.append(self.image(im,[x,y]))
self.lim = self.ax3d.get_w_lims()
self.rot = self.ax3d.get_proj()
self.cid = self.ax3d.figure.canvas.mpl_connect("draw_event",self.update)
self.funcmap = {"button_press_event" : self.ax3d._button_press,
"motion_notify_event" : self.ax3d._on_move,
"button_release_event" : self.ax3d._button_release}
self.cfs = [self.ax3d.figure.canvas.mpl_connect(kind, self.cb)
for kind in self.funcmap.keys()]
def cb(self, event):
event.inaxes = self.ax3d
self.funcmap[event.name](event)
def proj(self, X):
""" From a 3D point in axes ax1,
calculate position in 2D in ax2 """
x,y,z = X
x2, y2, _ = proj3d.proj_transform(x,y,z, self.ax3d.get_proj())
tr = self.ax3d.transData.transform((x2, y2))
return self.ax2d.transData.inverted().transform(tr)
def image(self,arr,xy):
""" Place an image (arr) as annotation at position xy """
im = offsetbox.OffsetImage(arr, zoom=2)
im.image.axes = ax
ab = offsetbox.AnnotationBbox(im, xy, xybox=(-30., 30.),
xycoords='data', boxcoords="offset points",
pad=0.3, arrowprops=dict(arrowstyle="->"))
self.ax2d.add_artist(ab)
return ab
def update(self,event):
if np.any(self.ax3d.get_w_lims() != self.lim) or
np.any(self.ax3d.get_proj() != self.rot):
self.lim = self.ax3d.get_w_lims()
self.rot = self.ax3d.get_proj()
for s,ab in zip(self.xyz, self.annot):
ab.xy = self.proj(s)
imgs = [np.random.rand(10,10) for i in range(len(xs))]
ia = ImageAnnotations3D(np.c_[xs,ys,zs],imgs,ax, ax2 )
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
这篇关于Matplotlib:以图像为注释的 3D 散点图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!