我尝试利用 python 的池多处理功能.
I try to utilize the pool multiprocessing functionality of python.
独立于我如何设置块大小(在 Windows 7 和 Ubuntu 下 - 后者见下文,具有 4 个内核),并行线程的数量似乎保持不变.
Independent how I set the chunk size (under Windows 7 and Ubuntu - the latter see below with 4 cores), the amount of parallel threads seems to stay the same.
from multiprocessing import Pool
from multiprocessing import cpu_count
import multiprocessing
import time
def f(x):
print("ready to sleep", x, multiprocessing.current_process())
time.sleep(20)
print("slept with:", x, multiprocessing.current_process())
if __name__ == '__main__':
processes = cpu_count()
print('-' * 20)
print('Utilizing %d cores' % processes)
print('-' * 20)
pool = Pool(processes)
myList = []
runner = 0
while runner < 40:
myList.append(runner)
runner += 1
print("len(myList):", len(myList))
# chunksize = int(len(myList) / processes)
# chunksize = processes
chunksize = 1
print("chunksize:", chunksize)
pool.map(f, myList, 1)
无论我使用 chunksize = int(len(myList)/processes)
、chunksize = processes
还是 1
(如上例所示).
The behaviour is the same whether I use chunksize = int(len(myList) / processes)
, chunksize = processes
or 1
(as in the example above).
会不会是chunksize自动设置为核数?
Could it be that the chunksize is set automatically to the amount of cores?
chunksize = 1
的示例:
--------------------
Utilizing 4 cores
--------------------
len(myList): 40
chunksize: 10
ready to sleep 0 <ForkProcess(ForkPoolWorker-1, started daemon)>
ready to sleep 1 <ForkProcess(ForkPoolWorker-2, started daemon)>
ready to sleep 2 <ForkProcess(ForkPoolWorker-3, started daemon)>
ready to sleep 3 <ForkProcess(ForkPoolWorker-4, started daemon)>
slept with: 0 <ForkProcess(ForkPoolWorker-1, started daemon)>
ready to sleep 4 <ForkProcess(ForkPoolWorker-1, started daemon)>
slept with: 1 <ForkProcess(ForkPoolWorker-2, started daemon)>
ready to sleep 5 <ForkProcess(ForkPoolWorker-2, started daemon)>
slept with: 2 <ForkProcess(ForkPoolWorker-3, started daemon)>
ready to sleep 6 <ForkProcess(ForkPoolWorker-3, started daemon)>
slept with: 3 <ForkProcess(ForkPoolWorker-4, started daemon)>
ready to sleep 7 <ForkProcess(ForkPoolWorker-4, started daemon)>
slept with: 4 <ForkProcess(ForkPoolWorker-1, started daemon)>
ready to sleep 8 <ForkProcess(ForkPoolWorker-1, started daemon)>
slept with: 5 <ForkProcess(ForkPoolWorker-2, started daemon)>
ready to sleep 9 <ForkProcess(ForkPoolWorker-2, started daemon)>
slept with: 6 <ForkProcess(ForkPoolWorker-3, started daemon)>
ready to sleep 10 <ForkProcess(ForkPoolWorker-3, started daemon)>
slept with: 7 <ForkProcess(ForkPoolWorker-4, started daemon)>
ready to sleep 11 <ForkProcess(ForkPoolWorker-4, started daemon)>
slept with: 8 <ForkProcess(ForkPoolWorker-1, started daemon)>
Chunksize 不影响使用多少核心,这是由 Pool 的
processes
参数设置的代码>.Chunksize 设置您传递给 Pool.map
的可迭代项的数量,在 Pool
调用的每个工作进程中一次分布任务"(下图显示 Python 3.7.1).
Chunksize doesn't influence how many cores are getting used, this is set by the processes
parameter of Pool
. Chunksize sets how many items of the iterable you pass to Pool.map
, are distributed per single worker-process at once in what Pool
calls a "task" (figure below shows Python 3.7.1).
如果您设置 chunksize=1
,工作进程会在新任务中收到一个新项目,只有在完成之前收到的项目之后.对于 chunksize >1
一个工人在一个任务中一次得到一整批物品,当它完成时,如果有剩余,它会得到下一批.
In case you set chunksize=1
, a worker-process gets fed with a new item, in a new task, only after finishing the one received before. For chunksize > 1
a worker gets a whole batch of items at once within a task and when it's finished, it gets the next batch if there are any left.
使用 chunksize=1
逐个分发项目增加了调度的灵活性,但同时降低了整体吞吐量,因为滴灌需要更多的进程间通信 (IPC).
Distributing items one-by-one with chunksize=1
increases flexibility of scheduling while it decreases overall throughput, because drip feeding requires more inter-process communication (IPC).
在我对 Pool 的 chunksize 算法的深入分析这里中,我定义了工作单元 用于将迭代的 一个 项处理为 taskel,以避免命名与 Pool 对单词task"的使用冲突.任务(作为工作单元)由 chunksize
taskels 组成.
In my in-depth analysis of Pool's chunksize-algorithm here, I define the unit of work for processing one item of the iterable as taskel, to avoid naming conflicts with Pool's usage of the word "task". A task (as unit of work) consists of chunksize
taskels.
如果您无法预测任务单元需要多长时间完成,例如优化问题,您可以设置 chunksize=1
,其中任务单元的处理时间差异很大.此处的滴灌可防止工作进程坐在一堆未触及的项目上,同时处理一个沉重的任务,防止他的任务中的其他项目被分配给空闲的工作进程.
You would set chunksize=1
if you cannot predict how long a taskel will need to finish, for example an optimization problem, where the processing time greatly varies across taskels. Drip-feeding here prevents a worker-process sitting on a pile of untouched items, while chrunching on one heavy taskel, preventing the other items in his task to be distributed to idling worker-processes.
否则,如果您的所有任务都需要相同的时间来完成,您可以设置 chunksize=len(iterable)//processes
,以便任务仅在所有工作人员之间分配一次.请注意,如果 len(iterable)/processes
有剩余,这将产生比进程(进程 + 1)多一个任务.这有可能严重影响您的整体计算时间.在之前链接的答案中阅读更多相关信息.
Otherwise, if all your taskels will need the same time to finish, you can set chunksize=len(iterable) // processes
, so that tasks are only distributed once across all workers. Note that this will produce one more task than there are processes (processes + 1) in case len(iterable) / processes
has a remainder. This has the potential to severely impact your overall computation time. Read more about this in the previously linked answer.
仅供参考,这是源代码的一部分,如果未设置,Pool
会在内部计算块大小:
FYI, that's the part of source code where Pool
internally calculates the chunksize if not set:
# Python 3.6, line 378 in `multiprocessing.pool.py`
if chunksize is None:
chunksize, extra = divmod(len(iterable), len(self._pool) * 4)
if extra:
chunksize += 1
if len(iterable) == 0:
chunksize = 0
这篇关于块大小与 Python 中的多处理/pool.map 无关?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!