我从日期"列创建了一个 DatetimeIndex:
I created a DatetimeIndex from a "date" column:
sales.index = pd.DatetimeIndex(sales["date"])
现在索引如下:
DatetimeIndex(['2003-01-02', '2003-01-03', '2003-01-04', '2003-01-06',
'2003-01-07', '2003-01-08', '2003-01-09', '2003-01-10',
'2003-01-11', '2003-01-13',
...
'2016-07-22', '2016-07-23', '2016-07-24', '2016-07-25',
'2016-07-26', '2016-07-27', '2016-07-28', '2016-07-29',
'2016-07-30', '2016-07-31'],
dtype='datetime64[ns]', name='date', length=4393, freq=None)
如您所见,freq
属性为无.我怀疑未来的错误是由缺少 freq
引起的.但是,如果我尝试明确设置频率:
As you see, the freq
attribute is None. I suspect that errors down the road are caused by the missing freq
. However, if I try to set the frequency explicitly:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-148-30857144de81> in <module>()
1 #### DEBUG
----> 2 sales_train = disentangle(df_train)
3 sales_holdout = disentangle(df_holdout)
4 result = sarima_fit_predict(sales_train.loc[5002, 9990]["amount_sold"], sales_holdout.loc[5002, 9990]["amount_sold"])
<ipython-input-147-08b4c4ecdea3> in disentangle(df_train)
2 # transform sales table to disentangle sales time series
3 sales = df_train[["date", "store_id", "article_id", "amount_sold"]]
----> 4 sales.index = pd.DatetimeIndex(sales["date"], freq="d")
5 sales = sales.pivot_table(index=["store_id", "article_id", "date"])
6 return sales
/usr/local/lib/python3.6/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
89 else:
90 kwargs[new_arg_name] = new_arg_value
---> 91 return func(*args, **kwargs)
92 return wrapper
93 return _deprecate_kwarg
/usr/local/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py in __new__(cls, data, freq, start, end, periods, copy, name, tz, verify_integrity, normalize, closed, ambiguous, dtype, **kwargs)
399 'dates does not conform to passed '
400 'frequency {1}'
--> 401 .format(inferred, freq.freqstr))
402
403 if freq_infer:
ValueError: Inferred frequency None from passed dates does not conform to passed frequency D
显然已经推断出频率,但既没有存储在 DatetimeIndex 的 freq
属性中,也没有存储在 inferred_freq
属性中 - 两者都是 None.有人能解惑吗?
So apparently a frequency has been inferred, but is stored neither in the freq
nor inferred_freq
attribute of the DatetimeIndex - both are None. Can someone clear up the confusion?
这里有几个选项:
pd.infer_freq
pd.tseries.frequencies.to_offset
我怀疑后面的错误是由缺少频率引起的.
I suspect that errors down the road are caused by the missing freq.
你完全正确.这是我经常使用的:
You are absolutely right. Here's what I use often:
def add_freq(idx, freq=None):
"""Add a frequency attribute to idx, through inference or directly.
Returns a copy. If `freq` is None, it is inferred.
"""
idx = idx.copy()
if freq is None:
if idx.freq is None:
freq = pd.infer_freq(idx)
else:
return idx
idx.freq = pd.tseries.frequencies.to_offset(freq)
if idx.freq is None:
raise AttributeError('no discernible frequency found to `idx`. Specify'
' a frequency string with `freq`.')
return idx
一个例子:
idx=pd.to_datetime(['2003-01-02', '2003-01-03', '2003-01-06']) # freq=None
print(add_freq(idx)) # inferred
DatetimeIndex(['2003-01-02', '2003-01-03', '2003-01-06'], dtype='datetime64[ns]', freq='B')
print(add_freq(idx, freq='D')) # explicit
DatetimeIndex(['2003-01-02', '2003-01-03', '2003-01-06'], dtype='datetime64[ns]', freq='D')
使用 asfreq
实际上会重新索引(填充)缺失的日期,因此如果这不是您要查找的内容,请小心.
Using asfreq
will actually reindex (fill) missing dates, so be careful of that if that's not what you're looking for.
改变频率的主要函数是 asfreq
函数.对于 DatetimeIndex
,这基本上只是一个简单但方便的reindex
的包装器,它生成一个 date_range
并调用 reindex
.
The primary function for changing frequencies is the
asfreq
function. For aDatetimeIndex
, this is basically just a thin, but convenient wrapper aroundreindex
which generates adate_range
and callsreindex
.
这篇关于pandas.DatetimeIndex 频率为 None 且无法设置的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!