CREATE TABLE `files` (
`did` int(10) unsigned NOT NULL DEFAULT '0',
`filename` varbinary(200) NOT NULL,
`ext` varbinary(5) DEFAULT NULL,
`fsize` double DEFAULT NULL,
`filetime` datetime DEFAULT NULL,
PRIMARY KEY (`did`,`filename`),
KEY `fe` (`filetime`,`ext`), -- This?
KEY `ef` (`ext`,`filetime`) -- or This?
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ;
表中有一百万行.文件时间大多不同.ext
值的数量是有限的.因此,filetime
的基数很高,而 ext
的基数要低得多.
There are a million rows in the table. The filetimes are mostly distinct. There are a finite number of ext
values. So, filetime
has a high cardinality and ext
has a much lower cardinality.
查询同时涉及ext
和filetime
:
WHERE ext = '...'
AND filetime BETWEEN ... AND ...
这两个指标哪个更好?为什么?
Which of those two indexes is better? And why?
首先,让我们试试 FORCE INDEX
选择 ef
或 fe
.时间太短,无法清楚地了解哪个更快,但`EXPLAIN 显示了一个差异:
First, let's try FORCE INDEX
to pick either ef
or fe
. The timings are too short to get a clear picture of which is faster, but `EXPLAIN shows a difference:
首先在 filetime
上强制范围.(注意:WHERE
中的顺序没有影响.)
Forcing the range on filetime
first. (Note: The order in WHERE
has no impact.)
mysql> EXPLAIN SELECT COUNT(*), AVG(fsize)
FROM files FORCE INDEX(fe)
WHERE ext = 'gif' AND filetime >= '2015-01-01'
AND filetime < '2015-01-01' + INTERVAL 1 MONTH;
+----+-------------+-------+-------+---------------+------+---------+------+-------+-----------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+------+---------+------+-------+-----------------------+
| 1 | SIMPLE | files | range | fe | fe | 14 | NULL | 16684 | Using index condition |
+----+-------------+-------+-------+---------------+------+---------+------+-------+-----------------------+
强制低基数ext
优先:
mysql> EXPLAIN SELECT COUNT(*), AVG(fsize)
FROM files FORCE INDEX(ef)
WHERE ext = 'gif' AND filetime >= '2015-01-01'
AND filetime < '2015-01-01' + INTERVAL 1 MONTH;
+----+-------------+-------+-------+---------------+------+---------+------+------+-----------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+------+---------+------+------+-----------------------+
| 1 | SIMPLE | files | range | ef | ef | 14 | NULL | 538 | Using index condition |
+----+-------------+-------+-------+---------------+------+---------+------+------+-----------------------+
显然,rows
表示 ef
更好.但是让我们检查优化器跟踪.输出相当庞大;我只会展示有趣的部分.不需要FORCE
;跟踪将显示两个选项,然后选择更好的.
Clearly, the rows
says ef
is better. But let's check with the Optimizer trace. The output is rather bulky; I'll show only the interesting parts. No FORCE
is needed; the trace will show both options then pick the better.
...
"potential_range_indices": [
...
{
"index": "fe",
"usable": true,
"key_parts": [
"filetime",
"ext",
"did",
"filename"
]
},
{
"index": "ef",
"usable": true,
"key_parts": [
"ext",
"filetime",
"did",
"filename"
]
}
],
...
"analyzing_range_alternatives": {
"range_scan_alternatives": [
{
"index": "fe",
"ranges": [
"2015-01-01 00:00:00 <= filetime < 2015-02-01 00:00:00"
],
"index_dives_for_eq_ranges": true,
"rowid_ordered": false,
"using_mrr": false,
"index_only": false,
"rows": 16684,
"cost": 20022, <-- Here's the critical number
"chosen": true
},
{
"index": "ef",
"ranges": [
"gif <= ext <= gif AND 2015-01-01 00:00:00 <= filetime < 2015-02-01 00:00:00"
],
"index_dives_for_eq_ranges": true,
"rowid_ordered": false,
"using_mrr": false,
"index_only": false,
"rows": 538,
"cost": 646.61, <-- Here's the critical number
"chosen": true
}
],
...
"attached_conditions_computation": [
{
"access_type_changed": {
"table": "`files`",
"index": "ef",
"old_type": "ref",
"new_type": "range",
"cause": "uses_more_keyparts" <-- Also interesting
}
}
使用 fe
(范围列第一),可以使用范围,但它估计扫描 16684 行以获取 ext='gif'
.
With fe
(range column first), the range could be used, but it estimated scanning through 16684 rows fishing for ext='gif'
.
使用ef
(低基数ext
优先),它可以使用索引的两列并在BTree中更有效地向下钻取.然后它发现了大约 538 行,所有这些行都对查询有用——不需要进一步过滤.
With ef
(low cardinality ext
first), it could use both columns of the index and drill down more efficiently in the BTree. Then it found an estimated 538 rows, all of which are useful for the query -- no further filtering needed.
结论:
INDEX(filetime, ext)
只使用了第一列.INDEX(ext, filetime)
使用了两列.=
中涉及的列首先放在索引中不管基数.INDEX(filetime, ext)
used only the first column.INDEX(ext, filetime)
used both columns.=
tests first in the index regardless of cardinality.(使用索引条件"意味着存储引擎 (InnoDB) 将使用索引中超出用于过滤的列.)
("Using index condition" means that the Storage Engine (InnoDB) will use columns of the index beyond the one used for filtering.)
这篇关于涉及范围时,索引中首先出现更高基数的列?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!