假设我有 student
、club
和 student_club
表:
Assuming I have the tables student
, club
, and student_club
:
student {
id
name
}
club {
id
name
}
student_club {
student_id
club_id
}
我想知道如何找到足球 (30) 和棒球 (50) 俱乐部的所有学生.
虽然此查询不起作用,但它是我迄今为止最接近的:
I want to know how to find all students in both the soccer (30) and baseball (50) club.
While this query doesn't work, it's the closest thing I have so far:
SELECT student.*
FROM student
INNER JOIN student_club sc ON student.id = sc.student_id
LEFT JOIN club c ON c.id = sc.club_id
WHERE c.id = 30 AND c.id = 50
我很好奇.众所周知,好奇心以杀死猫而闻名.
I was curious. And as we all know, curiosity has a reputation for killing cats.
本次测试的猫皮环境:
student.id
是 student.stud_id
而 club.id
是 club.club_id
在这里.EXPLAIN ANALYZE
选择了 5 个中最好的.student.id
is student.stud_id
and club.id
is club.club_id
here.EXPLAIN ANALYZE
.ALTER TABLE student ADD CONSTRAINT student_pkey PRIMARY KEY(stud_id );
ALTER TABLE student_club ADD CONSTRAINT sc_pkey PRIMARY KEY(stud_id, club_id);
ALTER TABLE club ADD CONSTRAINT club_pkey PRIMARY KEY(club_id );
CREATE INDEX sc_club_id_idx ON student_club (club_id);
此处的大多数查询不需要
club_pkey
.
主键在 PostgreSQL 中自动实现唯一索引.
最后一个索引是为了弥补多列索引 在 PostgreSQL 上:
club_pkey
is not required by most queries here.
Primary keys implement unique indexes automatically In PostgreSQL.
The last index is to make up for this known shortcoming of multi-column indexes on PostgreSQL:
多列 B 树索引可以与查询条件一起使用涉及索引列的任何子集,但索引是最多的当对前导(最左侧)列有约束时效率高.
A multicolumn B-tree index can be used with query conditions that involve any subset of the index's columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
来自 EXPLAIN ANALYZE
的总运行时间.
SELECT s.stud_id, s.name
FROM student s
JOIN student_club sc USING (stud_id)
WHERE sc.club_id IN (30, 50)
GROUP BY 1,2
HAVING COUNT(*) > 1;
SELECT s.stud_id, s.name
FROM student s
JOIN (
SELECT stud_id
FROM student_club
WHERE club_id IN (30, 50)
GROUP BY 1
HAVING COUNT(*) > 1
) sc USING (stud_id);
SELECT s.stud_id, s.name
FROM student s
WHERE student_id IN (
SELECT student_id
FROM student_club
WHERE club_id = 30
INTERSECT
SELECT stud_id
FROM student_club
WHERE club_id = 50
);
SELECT s.stud_id, s.name
FROM student s
WHERE s.stud_id IN (SELECT stud_id FROM student_club WHERE club_id = 30)
AND s.stud_id IN (SELECT stud_id FROM student_club WHERE club_id = 50);
SELECT s.stud_id, s.name
FROM student s
WHERE EXISTS (SELECT * FROM student_club
WHERE stud_id = s.stud_id AND club_id = 30)
AND EXISTS (SELECT * FROM student_club
WHERE stud_id = s.stud_id AND club_id = 50);
SELECT s.stud_id, s.name
FROM student s
JOIN student_club x ON s.stud_id = x.stud_id
JOIN student_club y ON s.stud_id = y.stud_id
WHERE x.club_id = 30
AND y.club_id = 50;
最后三个表现几乎相同.4) 和 5) 产生相同的查询计划.
The last three perform pretty much the same. 4) and 5) result in the same query plan.
花哨的 SQL,但性能跟不上:
Fancy SQL, but the performance can't keep up:
SELECT s.stud_id, s.name
FROM student AS s
WHERE NOT EXISTS (
SELECT *
FROM club AS c
WHERE c.club_id IN (30, 50)
AND NOT EXISTS (
SELECT *
FROM student_club AS sc
WHERE sc.stud_id = s.stud_id
AND sc.club_id = c.club_id
)
);
SELECT s.stud_id, s.name
FROM student AS s
WHERE NOT EXISTS (
SELECT *
FROM (
SELECT 30 AS club_id
UNION ALL
SELECT 50
) AS c
WHERE NOT EXISTS (
SELECT *
FROM student_club AS sc
WHERE sc.stud_id = s.stud_id
AND sc.club_id = c.club_id
)
);
不出所料,这两者的表现几乎相同.查询计划导致表扫描,计划器在此处找不到使用索引的方法.
As expected, those two perform almost the same. Query plan results in table scans, the planner doesn't find a way to use the indexes here.
WITH RECURSIVE two AS (
SELECT 1::int AS level
, stud_id
FROM student_club sc1
WHERE sc1.club_id = 30
UNION
SELECT two.level + 1 AS level
, sc2.stud_id
FROM student_club sc2
JOIN two USING (stud_id)
WHERE sc2.club_id = 50
AND two.level = 1
)
SELECT s.stud_id, s.student
FROM student s
JOIN two USING (studid)
WHERE two.level > 1;
Fancy SQL,CTE 性能不错.非常奇特的查询计划.
Fancy SQL, decent performance for a CTE. Very exotic query plan.
WITH sc AS (
SELECT stud_id
FROM student_club
WHERE club_id IN (30,50)
GROUP BY stud_id
HAVING COUNT(*) > 1
)
SELECT s.*
FROM student s
JOIN sc USING (stud_id);
查询 2) 的 CTE 变体.令人惊讶的是,对于完全相同的数据,它可能会导致略有不同的查询计划.我在 student
上发现了一个顺序扫描,其中子查询变体使用了索引.
CTE variant of query 2). Surprisingly, it can result in a slightly different query plan with the exact same data. I found a sequential scan on student
, where the subquery-variant used the index.
另一个后期添加的超立方体.真是太神奇了,有多少种方法.
Another late addition ypercube. It is positively amazing, how many ways there are.
SELECT s.stud_id, s.student
FROM student s
JOIN student_club sc USING (stud_id)
WHERE sc.club_id = 10 -- member in 1st club ...
AND NOT EXISTS (
SELECT *
FROM (SELECT 14 AS club_id) AS c -- can't be excluded for missing the 2nd
WHERE NOT EXISTS (
SELECT *
FROM student_club AS d
WHERE d.stud_id = sc.stud_id
AND d.club_id = c.club_id
)
);
ypercube 的 11) 实际上只是这个更简单变体的令人费解的反向方法,它也仍然缺失.表现几乎和顶级猫一样快.
ypercube's 11) is actually just the mind-twisting reverse approach of this simpler variant, that was also still missing. Performs almost as fast as the top cats.
SELECT s.*
FROM student s
JOIN student_club x USING (stud_id)
WHERE sc.club_id = 10 -- member in 1st club ...
AND EXISTS ( -- ... and membership in 2nd exists
SELECT *
FROM student_club AS y
WHERE y.stud_id = s.stud_id
AND y.club_id = 14
);
难以置信,但这是另一个真正的新变体.我看到了超过两个会员资格的潜力,但它也仅拥有两个会员资格就跻身顶级猫之列.
Hard to believe, but here's another, genuinely new variant. I see potential for more than two memberships, but it also ranks among the top cats with just two.
SELECT s.*
FROM student AS s
WHERE EXISTS (
SELECT *
FROM student_club AS x
JOIN student_club AS y USING (stud_id)
WHERE x.stud_id = s.stud_id
AND x.club_id = 14
AND y.club_id = 10
);
换句话说:不同数量的过滤器.这个问题正好要求两个俱乐部会员资格.但是许多用例必须为不同的数量做准备.见:
In other words: varying number of filters. This question asked for exactly two club memberships. But many use cases have to prepare for a varying number. See:
这篇关于如何过滤具有多次通过关系的 SQL 结果的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!