我尝试搜索帖子,但我只找到了 SQL Server/Access 的解决方案.我需要 MySQL (5.X) 中的解决方案.
I tried to search posts, but I only found solutions for SQL Server/Access. I need a solution in MySQL (5.X).
我有一个包含 3 列的表(称为历史记录):hostid、itemname、itemvalue.
如果我做了一个选择(select * from history
),它会返回
I have a table (called history) with 3 columns: hostid, itemname, itemvalue.
If I do a select (select * from history
), it will return
+--------+----------+-----------+
| hostid | itemname | itemvalue |
+--------+----------+-----------+
| 1 | A | 10 |
+--------+----------+-----------+
| 1 | B | 3 |
+--------+----------+-----------+
| 2 | A | 9 |
+--------+----------+-----------+
| 2 | c | 40 |
+--------+----------+-----------+
如何查询数据库以返回类似的内容
How do I query the database to return something like
+--------+------+-----+-----+
| hostid | A | B | C |
+--------+------+-----+-----+
| 1 | 10 | 3 | 0 |
+--------+------+-----+-----+
| 2 | 9 | 0 | 40 |
+--------+------+-----+-----+
我将添加更长更详细的说明,说明解决此问题的步骤.如果太长,我深表歉意.
I'm going to add a somewhat longer and more detailed explanation of the steps to take to solve this problem. I apologize if it's too long.
我将从您提供的基础开始,并使用它来定义我将在本文的其余部分使用的几个术语.这将是基表:
I'll start out with the base you've given and use it to define a couple of terms that I'll use for the rest of this post. This will be the base table:
select * from history;
+--------+----------+-----------+
| hostid | itemname | itemvalue |
+--------+----------+-----------+
| 1 | A | 10 |
| 1 | B | 3 |
| 2 | A | 9 |
| 2 | C | 40 |
+--------+----------+-----------+
这将是我们的目标,漂亮的数据透视表:
select * from history_itemvalue_pivot;
+--------+------+------+------+
| hostid | A | B | C |
+--------+------+------+------+
| 1 | 10 | 3 | 0 |
| 2 | 9 | 0 | 40 |
+--------+------+------+------+
history.hostid
列中的值将成为数据透视表中的 y 值.history.itemname
列中的值将变为 x 值(原因很明显).
Values in the history.hostid
column will become y-values in the pivot table. Values in the history.itemname
column will become x-values (for obvious reasons).
当我必须解决创建数据透视表的问题时,我会使用三步流程(可选的第四步)来解决它:
When I have to solve the problem of creating a pivot table, I tackle it using a three-step process (with an optional fourth step):
让我们将这些步骤应用于您的问题,看看我们得到了什么:
Let's apply these steps to your problem and see what we get:
第 1 步:选择感兴趣的列.在所需的结果中,hostid
提供 y 值,itemname
提供 x 值.
Step 1: select columns of interest. In the desired result, hostid
provides the y-values and itemname
provides the x-values.
第 2 步:使用额外的列扩展基表.我们通常每个 x 值需要一列.回想一下我们的 x 值列是 itemname
:
Step 2: extend the base table with extra columns. We typically need one column per x-value. Recall that our x-value column is itemname
:
create view history_extended as (
select
history.*,
case when itemname = "A" then itemvalue end as A,
case when itemname = "B" then itemvalue end as B,
case when itemname = "C" then itemvalue end as C
from history
);
select * from history_extended;
+--------+----------+-----------+------+------+------+
| hostid | itemname | itemvalue | A | B | C |
+--------+----------+-----------+------+------+------+
| 1 | A | 10 | 10 | NULL | NULL |
| 1 | B | 3 | NULL | 3 | NULL |
| 2 | A | 9 | 9 | NULL | NULL |
| 2 | C | 40 | NULL | NULL | 40 |
+--------+----------+-----------+------+------+------+
请注意,我们没有更改行数——我们只是添加了额外的列.还要注意 NULL
s 的模式——itemname = "A"
的行对于新列 A
具有非空值,并且其他新列的空值.
Note that we didn't change the number of rows -- we just added extra columns. Also note the pattern of NULL
s -- a row with itemname = "A"
has a non-null value for new column A
, and null values for the other new columns.
步骤 3:对扩展表进行分组和聚合.我们需要group by hostid
,因为它提供了y值:
Step 3: group and aggregate the extended table. We need to group by hostid
, since it provides the y-values:
create view history_itemvalue_pivot as (
select
hostid,
sum(A) as A,
sum(B) as B,
sum(C) as C
from history_extended
group by hostid
);
select * from history_itemvalue_pivot;
+--------+------+------+------+
| hostid | A | B | C |
+--------+------+------+------+
| 1 | 10 | 3 | NULL |
| 2 | 9 | NULL | 40 |
+--------+------+------+------+
(请注意,我们现在每个 y 值有一行.) 好的,我们快到了!我们只需要摆脱那些丑陋的NULL
s.
(Note that we now have one row per y-value.) Okay, we're almost there! We just need to get rid of those ugly NULL
s.
第 4 步:美化.我们将用零替换任何空值,以便结果集更好看:
Step 4: prettify. We're just going to replace any null values with zeroes so the result set is nicer to look at:
create view history_itemvalue_pivot_pretty as (
select
hostid,
coalesce(A, 0) as A,
coalesce(B, 0) as B,
coalesce(C, 0) as C
from history_itemvalue_pivot
);
select * from history_itemvalue_pivot_pretty;
+--------+------+------+------+
| hostid | A | B | C |
+--------+------+------+------+
| 1 | 10 | 3 | 0 |
| 2 | 9 | 0 | 40 |
+--------+------+------+------+
我们已经完成了——我们已经使用 MySQL 构建了一个漂亮、漂亮的数据透视表.
And we're done -- we've built a nice, pretty pivot table using MySQL.
应用此程序时的注意事项:
Considerations when applying this procedure:
itemvalue
NULL
,但也可以是 0
或 ""
,具体取决于您的具体情况sum
,但是count
和max
也经常用到(max
常用于构建单行分散在多行中的对象")group by
子句(不要忘记 select
他们)itemvalue
in this exampleNULL
, but it could also be 0
or ""
, depending on your exact situationsum
, but count
and max
are also often used (max
is often used when building one-row "objects" that had been spread across many rows)group by
clause (and don't forget to select
them)已知限制:
这篇关于MySQL - 行到列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!