多边形轮廓上的边缘并不总是正确的

时间:2023-04-11
本文介绍了多边形轮廓上的边缘并不总是正确的的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我使用下面的算法来生成四边形,然后渲染成这样的轮廓

<块引用>

I'm using the algorithm below to generate quads which are then rendered to make an outline like this

http://img810.imageshack.us/img810/8530/uhohz.png

The problem as seen on the image is that sometimes the lines are too thin when they should always be the same width. My algorithm finds the 4 vertices for the first one then the top 2 vertices of the next ones are the bottom 2 of the previous. This creates connected lines, but it seems to not always work. How could I fix this?

This is my algorithm:

 void OGLENGINEFUNCTIONS::GenerateLinePoly(const std::vector<std::vector<GLdouble>> &input,
                          std::vector<GLfloat> &output, int width)
 {
     output.clear();

     if(input.size() < 2)
     {
         return;
     }

     int temp;
     float dirlen;
     float perplen;
     POINTFLOAT start;
     POINTFLOAT end;
     POINTFLOAT dir;
     POINTFLOAT ndir;
     POINTFLOAT perp;
     POINTFLOAT nperp;

     POINTFLOAT perpoffset;
     POINTFLOAT diroffset;

     POINTFLOAT p0, p1, p2, p3;

     for(unsigned int i = 0; i < input.size() - 1; ++i)
     {

         start.x = static_cast<float>(input[i][0]);
         start.y = static_cast<float>(input[i][1]);

         end.x = static_cast<float>(input[i + 1][0]);
         end.y = static_cast<float>(input[i + 1][1]);

         dir.x = end.x - start.x;
         dir.y = end.y - start.y;

         dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y));

         ndir.x = static_cast<float>(dir.x * 1.0 / dirlen);
         ndir.y = static_cast<float>(dir.y * 1.0 / dirlen);

         perp.x = dir.y;
         perp.y = -dir.x;

         perplen = sqrt((perp.x * perp.x) + (perp.y * perp.y));

         nperp.x = static_cast<float>(perp.x * 1.0 / perplen);
         nperp.y = static_cast<float>(perp.y * 1.0 / perplen);

         perpoffset.x = static_cast<float>(nperp.x * width * 0.5);
         perpoffset.y = static_cast<float>(nperp.y * width * 0.5);

         diroffset.x = static_cast<float>(ndir.x * 0 * 0.5);
         diroffset.y = static_cast<float>(ndir.y * 0 * 0.5);

            // p0 = start + perpoffset - diroffset
            // p1 = start - perpoffset - diroffset
            // p2 = end + perpoffset + diroffset
            // p3 = end - perpoffset + diroffset 

         p0.x = start.x + perpoffset.x - diroffset.x;
         p0.y = start.y + perpoffset.y - diroffset.y;

         p1.x = start.x - perpoffset.x - diroffset.x;
         p1.y = start.y - perpoffset.y - diroffset.y;

         if(i > 0)
         {
             temp = (8 * (i - 1));
             p2.x = output[temp + 2];
             p2.y = output[temp + 3];
             p3.x = output[temp + 4];
             p3.y = output[temp + 5];

         }
         else
         {
             p2.x = end.x + perpoffset.x + diroffset.x;
             p2.y = end.y + perpoffset.y + diroffset.y;

             p3.x = end.x - perpoffset.x + diroffset.x;
             p3.y = end.y - perpoffset.y + diroffset.y;
         }



         output.push_back(p2.x);
         output.push_back(p2.y);
         output.push_back(p0.x);
         output.push_back(p0.y);
         output.push_back(p1.x);
         output.push_back(p1.y);
         output.push_back(p3.x);
         output.push_back(p3.y);

     }
 }


Edit:

 POINTFLOAT multiply(const POINTFLOAT &a, float b)
 {
     POINTFLOAT result;
     result.x = a.x * b;
     result.y = a.y * b;
     return result;
 }

 POINTFLOAT normalize(const POINTFLOAT &a)
 {
     return multiply(a, 1.0f / sqrt(a.x * a.x + a.y * a.y));
 }


 POINTFLOAT slerp2d( const POINTFLOAT v0, 
                     const POINTFLOAT v1, float t )
 {
     float dot = (v0.x * v1.x + v1.y * v1.y);
     if( dot < -1.0f ) dot = -1.0f;
     if( dot > 1.0f ) dot = 1.0f;

     float theta_0 = acos( dot );
     float theta = theta_0 * t;

     POINTFLOAT v2;
     v2.x = -v0.y;
     v2.y = v0.x;

     POINTFLOAT result;
     result.x = v0.x * cos(theta) + v2.x * sin(theta);
     result.y = v0.y * cos(theta) + v2.y * sin(theta);

     return result;
 }

 void OGLENGINEFUNCTIONS::GenerateLinePoly(const std::vector<std::vector<GLdouble> > &input,
                          std::vector<GLfloat> &output, int width)
 {
     output.clear();

     if(input.size() < 2)
     {
         return;
     }

     float w = width / 2.0f;

     //glBegin(GL_TRIANGLES);
     for( size_t i = 0; i < input.size()-1; ++i )
     {
         POINTFLOAT cur;
         cur.x = input[i][0];
         cur.y = input[i][1];


         POINTFLOAT nxt;
         nxt.x = input[i+1][0];
         nxt.y = input[i+1][1];

         POINTFLOAT b;
         b.x = nxt.x - cur.x;
         b.y = nxt.y - cur.y;

         b = normalize(b);



         POINTFLOAT b_perp;
         b_perp.x = -b.y;
         b_perp.y = b.x;


         POINTFLOAT p0;
         POINTFLOAT p1;
         POINTFLOAT p2;
         POINTFLOAT p3;

         p0.x = cur.x + b_perp.x * w;
         p0.y = cur.y + b_perp.y * w;

         p1.x = cur.x - b_perp.x * w;
         p1.y = cur.y - b_perp.y * w;

         p2.x = nxt.x + b_perp.x * w;
         p2.y = nxt.y + b_perp.y * w;

         p3.x = nxt.x - b_perp.x * w;
         p3.y = nxt.y - b_perp.y * w;

         output.push_back(p0.x);
         output.push_back(p0.y);
         output.push_back(p1.x);
         output.push_back(p1.y);
         output.push_back(p2.x);
         output.push_back(p2.y);

         output.push_back(p2.x);
         output.push_back(p2.y);
         output.push_back(p1.x);
         output.push_back(p1.y);
         output.push_back(p3.x);
         output.push_back(p3.y);



         // only do joins when we have a prv
         if( i == 0 ) continue;

         POINTFLOAT prv;
         prv.x = input[i-1][0];
         prv.y = input[i-1][1];

         POINTFLOAT a;
         a.x = prv.x - cur.x;
         a.y = prv.y - cur.y;

         a = normalize(a);

         POINTFLOAT a_perp;
         a_perp.x = a.y;
         a_perp.y = -a.x;

         float det = a.x * b.y - b.x * a.y;
         if( det > 0 )
         {
             a_perp.x = -a_perp.x;
             a_perp.y = -a_perp.y;

             b_perp.x = -b_perp.x;
             b_perp.y = -b_perp.y;
         }

         // TODO: do inner miter calculation

         // flip around normals and calculate round join points
         a_perp.x = -a_perp.x;
         a_perp.y = -a_perp.y;

         b_perp.x = -b_perp.x;
         b_perp.y = -b_perp.y;

         size_t num_pts = 4;

         std::vector< POINTFLOAT> round( 1 + num_pts + 1 );
         POINTFLOAT nc;
         nc.x = cur.x + (a_perp.x * w);
         nc.y = cur.y + (a_perp.y * w);

         round.front() = nc;

         nc.x = cur.x + (b_perp.x * w);
         nc.y = cur.y + (b_perp.y * w);

         round.back() = nc;

         for( size_t j = 1; j < num_pts+1; ++j )
         {
             float t = (float)j / (float)(num_pts + 1);
             if( det > 0 )
             {
                 POINTFLOAT nin;
                 nin = slerp2d( b_perp, a_perp, 1.0f-t );
                 nin.x *= w;
                 nin.y *= w;

                 nin.x += cur.x;
                 nin.y += cur.y;

                 round[j] = nin;
             }
             else
             {
                 POINTFLOAT nin;
                 nin = slerp2d( a_perp, b_perp, t );
                 nin.x *= w;
                 nin.y *= w;

                 nin.x += cur.x;
                 nin.y += cur.y;

                 round[j] = nin;
             }
         }

         for( size_t j = 0; j < round.size()-1; ++j )
         {

             output.push_back(cur.x);
             output.push_back(cur.y);

             if( det > 0 )
             {
                 output.push_back(round[j + 1].x);
                 output.push_back(round[j + 1].y);
                 output.push_back(round[j].x);
                 output.push_back(round[j].y);
             }
             else
             {

                 output.push_back(round[j].x);
                 output.push_back(round[j].y);

                 output.push_back(round[j + 1].x);
                 output.push_back(round[j + 1].y);
             }
         }
     }
 }

解决方案

Requires Eigen as written, but the core operations should map easily to whatever vector class you're using.

// v0 and v1 are normalized
// t can vary between 0 and 1
// http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/
Vector2f slerp2d( const Vector2f& v0, const Vector2f& v1, float t )
{
    float dot = v0.dot(v1);
    if( dot < -1.0f ) dot = -1.0f;
    if( dot > 1.0f ) dot = 1.0f;

    float theta_0 = acos( dot );
    float theta = theta_0 * t;

    Vector2f v2( -v0.y(), v0.x() );

    return ( v0*cos(theta) + v2*sin(theta) );
}


void glPolyline( const vector<Vector2f>& polyline, float width )
{
    if( polyline.size() < 2 ) return;
    float w = width / 2.0f;

    glBegin(GL_TRIANGLES);
    for( size_t i = 0; i < polyline.size()-1; ++i )
    {
        const Vector2f& cur = polyline[ i ];
        const Vector2f& nxt = polyline[i+1];

        Vector2f b = (nxt - cur).normalized();
        Vector2f b_perp( -b.y(), b.x() );

        Vector2f p0( cur + b_perp*w );
        Vector2f p1( cur - b_perp*w );
        Vector2f p2( nxt + b_perp*w );
        Vector2f p3( nxt - b_perp*w );

        // first triangle
        glVertex2fv( p0.data() );
        glVertex2fv( p1.data() );
        glVertex2fv( p2.data() );
        // second triangle
        glVertex2fv( p2.data() );
        glVertex2fv( p1.data() );
        glVertex2fv( p3.data() );

        // only do joins when we have a prv
        if( i == 0 ) continue;

        const Vector2f& prv = polyline[i-1];
        Vector2f a = (prv - cur).normalized();
        Vector2f a_perp( a.y(), -a.x() );

        float det = a.x()*b.y() - b.x()*a.y();
        if( det > 0 )
        {
            a_perp = -a_perp;
            b_perp = -b_perp;
        }

        // TODO: do inner miter calculation

        // flip around normals and calculate round join points
        a_perp = -a_perp;
        b_perp = -b_perp;

        size_t num_pts = 4;
        vector< Vector2f > round( 1 + num_pts + 1 );
        for( size_t j = 0; j <= num_pts+1; ++j )
        {
            float t = (float)j/(float)(num_pts+1);
            if( det > 0 )
                round[j] = cur + (slerp2d( b_perp, a_perp, 1.0f-t ) * w);
            else
                round[j] = cur + (slerp2d( a_perp, b_perp, t ) * w);
        }

        for( size_t j = 0; j < round.size()-1; ++j )
        {
            glVertex2fv( cur.data() );
            if( det > 0 )
            {
                glVertex2fv( round[j+1].data() );
                glVertex2fv( round[j+0].data() );
            }
            else
            {
                glVertex2fv( round[j+0].data() );
                glVertex2fv( round[j+1].data() );
            }
        }
    }
    glEnd();
}

EDIT: Screenshots:

这篇关于多边形轮廓上的边缘并不总是正确的的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

上一篇:使用 opengl 进行真正的等距投影 下一篇:Mac OSX 10.9 中的 Glut 弃用,IDE:QT Creator

相关文章