改进特征点与 OpenCV 的匹配

时间:2023-01-20
本文介绍了改进特征点与 OpenCV 的匹配的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我想匹配立体图像中的特征点.我已经用不同的算法找到并提取了特征点,现在我需要一个很好的匹配.在这种情况下,我使用 FAST 算法进行检测和提取,并使用 BruteForceMatcher 来匹配特征点.

匹配代码:

vector<向量<DMatch>>火柴;//使用FLANN或BruteForcePtr<DescriptorMatcher>matcher = DescriptorMatcher::create(algorithmName);matcher->knnMatch(descriptors_1,descriptors_2,matches,1);//只是一些临时代码以获得正确的数据结构向量<匹配>good_matches2;good_matches2.reserve(matches.size());for (size_t i = 0; i 

因为有很多错误匹配,我计算了最小和最大距离并删除了所有太糟糕的匹配:

//计算关键点之间的最大最小距离双max_dist = 0;双 min_dist = 100;for( int i = 0; i  max_dist ) max_dist = dist;}//找到好的"匹配向量<匹配>good_matches;for( int i = 0; i 

问题是,我要么得到很多错误匹配,要么只有少数正确匹配(见下图).


(来源:
(来源:
(来源:
(来源:codemax.de)

相关代码:

Ptr探测器;检测器 = new DynamicAdaptedFeatureDetector ( new FastAdjuster(10,true), 5000, 10000, 10);检测器->检测(leftImageGrey,keypoints_1);检测器->检测(rightImageGrey,keypoints_2);Ptr<DescriptorExtractor>提取器 = DescriptorExtractor::create("SIFT");提取器->计算(leftImageGrey,keypoints_1,descriptors_1);提取器->计算(rightImageGrey,keypoints_2,descriptors_2);向量<向量<DMatch>>火柴;Ptr<DescriptorMatcher>matcher = DescriptorMatcher::create("BruteForce");matcher->knnMatch(descriptors_1,descriptors_2,matches,500);//查看匹配是否在图像的定义区域内//只有最大可能距离的25%double tresholdDist = 0.25 * sqrt(double(leftImageGrey.size().height*leftImageGrey.size().height + leftImageGrey.size().width*leftImageGrey.size().width));向量<匹配>good_matches2;good_matches2.reserve(matches.size());for (size_t i = 0; i 

I want to match feature points in stereo images. I've already found and extracted the feature points with different algorithms and now I need a good matching. In this case I'm using the FAST algorithms for detection and extraction and the BruteForceMatcher for matching the feature points.

The matching code:

vector< vector<DMatch> > matches;
//using either FLANN or BruteForce
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(algorithmName);
matcher->knnMatch( descriptors_1, descriptors_2, matches, 1 );

//just some temporarily code to have the right data structure
vector< DMatch > good_matches2;
good_matches2.reserve(matches.size());  
for (size_t i = 0; i < matches.size(); ++i)
{ 
    good_matches2.push_back(matches[i][0]);     
}

Because there are a lot of false matches I caluclated the min and max distance and remove all matches that are too bad:

//calculation of max and min distances between keypoints
double max_dist = 0; double min_dist = 100;
for( int i = 0; i < descriptors_1.rows; i++ )
{
    double dist = good_matches2[i].distance;
    if( dist < min_dist ) min_dist = dist;
    if( dist > max_dist ) max_dist = dist;
}

//find the "good" matches
vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{
    if( good_matches2[i].distance <= 5*min_dist )
    {
        good_matches.push_back( good_matches2[i]); 
    }
}

The problem is, that I either get a lot of false matches or only a few right ones (see the images below).


(source: codemax.de)


(source: codemax.de)

I think it's not a problem of programming but more a matching thing. As far as I understood the BruteForceMatcher only regards the visual distance of feature points (which is stored in the FeatureExtractor), not the local distance (x&y position), which is in my case important, too. Has anybody any experiences with this problem or a good idea to improve the matching results?

EDIT

I changed the code, that it gives me the 50 best matches. After this I go through the first match to check, whether it's in a specified area. If it's not, I take the next match until I have found a match inside the given area.

vector< vector<DMatch> > matches;
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(algorithmName);
matcher->knnMatch( descriptors_1, descriptors_2, matches, 50 );

//look if the match is inside a defined area of the image
double tresholdDist = 0.25 * sqrt(double(leftImageGrey.size().height*leftImageGrey.size().height + leftImageGrey.size().width*leftImageGrey.size().width));

vector< DMatch > good_matches2;
good_matches2.reserve(matches.size());  
for (size_t i = 0; i < matches.size(); ++i)
{ 
    for (int j = 0; j < matches[i].size(); j++)
    {
    //calculate local distance for each possible match
    Point2f from = keypoints_1[matches[i][j].queryIdx].pt;
    Point2f to = keypoints_2[matches[i][j].trainIdx].pt;        
    double dist = sqrt((from.x - to.x) * (from.x - to.x) + (from.y - to.y) * (from.y - to.y));
    //save as best match if local distance is in specified area
    if (dist < tresholdDist)
    {
        good_matches2.push_back(matches[i][j]);
        j = matches[i].size();
    }
}

I think I don't get more matches, but with this I'm able to remove more false matches:


(source: codemax.de)

解决方案

By comparing all feature detection algorithms I found a good combination, which gives me a lot more matches. Now I am using FAST for feature detection, SIFT for feature extraction and BruteForce for the matching. Combined with the check, whether the matches is inside a defined region I get a lot of matches, see the image:


(source: codemax.de)

The relevant code:

Ptr<FeatureDetector> detector;
detector = new DynamicAdaptedFeatureDetector ( new FastAdjuster(10,true), 5000, 10000, 10);
detector->detect(leftImageGrey, keypoints_1);
detector->detect(rightImageGrey, keypoints_2);

Ptr<DescriptorExtractor> extractor = DescriptorExtractor::create("SIFT");
extractor->compute( leftImageGrey, keypoints_1, descriptors_1 );
extractor->compute( rightImageGrey, keypoints_2, descriptors_2 );

vector< vector<DMatch> > matches;
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce");
matcher->knnMatch( descriptors_1, descriptors_2, matches, 500 );

//look whether the match is inside a defined area of the image
//only 25% of maximum of possible distance
double tresholdDist = 0.25 * sqrt(double(leftImageGrey.size().height*leftImageGrey.size().height + leftImageGrey.size().width*leftImageGrey.size().width));

vector< DMatch > good_matches2;
good_matches2.reserve(matches.size());  
for (size_t i = 0; i < matches.size(); ++i)
{ 
    for (int j = 0; j < matches[i].size(); j++)
    {
        Point2f from = keypoints_1[matches[i][j].queryIdx].pt;
        Point2f to = keypoints_2[matches[i][j].trainIdx].pt;

        //calculate local distance for each possible match
        double dist = sqrt((from.x - to.x) * (from.x - to.x) + (from.y - to.y) * (from.y - to.y));

        //save as best match if local distance is in specified area and on same height
        if (dist < tresholdDist && abs(from.y-to.y)<5)
        {
            good_matches2.push_back(matches[i][j]);
            j = matches[i].size();
        }
    }
}

这篇关于改进特征点与 OpenCV 的匹配的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!